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Example so far: 

__kernel void 

foo(__local int* A, 

            int idx ) { 
 

  int x; 
 

  int y; 
 

  x = A[tid + idx]; 

 

 
 

  y = A[tid]; 

 

 
 

  A[tid] = x + y; 

 

} 

// \requires 0 <= tid$1 && tid$1 < N; 

// \requires 0 <= tid$2 && tid$2 < N; 

// \requires tid$1 != tid$2; 

// \requires idx$1 == idx$2; 

void foo( 

                       ) { 
 

  int x$1; int x$2; 
 

  int y$1; int y$2; 
 

  LOG_READ_A(tid$1 + idx$1); 

  CHECK_READ_A(tid$2 + idx$2); 

  havoc(x$1); havoc(x$2); 
 

  LOG_READ_A(tid$1); 

  CHECK_READ_A(tid$2); 

  havoc(y$1); havoc(y$2); 
 

  LOG_WRITE_A(tid$1); 

  CHECK_WRITE_A(tid$2); 

} 

int idx$1; int idx$2 
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Implementing LOG_READ_A 

Global variables READ_HAS_OCCURED_A and 

READ_OFFSET_A collectively log either nothing, or the 

offset of a single read from A by the first thread 

If READ_HAS_OCCURED_A is false, no read from A by 

the first thread has been logged.  In this case the value 
of READ_OFFSET_A is meaningless 

If READ_HAS_OCCURED_A is true, a read from A by the 

first thread has been logged, and the offset associated 
with this read is READ_OFFSET_A 

WRITE_HAS_OCCURED_A and WRITE_OFFSET_A are 

used similarly 
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Implementing LOG_READ_A 

void LOG_READ_A(int offset) { 

  if(*) { 

    READ_HAS_OCCURRED_A = true; 

    READ_OFFSET_A = offset; 

  } 

} 

Non-deterministically choose whether to 
- log this read from A, in which case existing values of 

READ_HAS_OCCURRED_A and READ_OFFSET_A are 

over-written, or: 

- Ignore this read from A, in which case 
READ_HAS_OCCURRED_A and READ_OFFSET_A are 

left alone 

* is an 

expression that 

evaluates non-

deterministically 
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Implementing LOG_WRITE_A 

void LOG_WRITE_A(int offset) { 

  if(*) { 

    WRITE_HAS_OCCURRED_A = true; 

    WRITE_OFFSET_A = offset; 

  } 

} 

Similar to LOG_READ_A 
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Implementing CHECK_READ_A 

void CHECK_READ_A(int offset) { 

  assert(WRITE_HAS_OCCURRED_A => 

         WRITE_OFFSET_A != offset); 

} 

A read from A at offset by second thread is OK unless 

first thread has logged a write to A at this offset 

Whether first thread has logged a write to A is 
determined by WRITE_HAS_OCCURRED_A 

If WRITE_HAS_OCCURRED_A is true then 

WRITE_OFFSET_A records the offset that was written 

to.  This must be different from offset 
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Implementing CHECK_WRITE_A 

void CHECK_WRITE_A(int offset) { 

  assert(WRITE_HAS_OCCURRED_A => 

         WRITE_OFFSET_A != offset); 

  assert(READ_HAS_OCCURRED_A => 

         READ_OFFSET_A != offset); 

} 

This is similar to CHECK_READ_A, but there is a little 

more to check: 

We must check that write by second thread does not 

conflict with a write or a read by first thread 
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Initially, no reads or writes are logged 

We specify this via the precondition: 

// \requires !READ_HAS_OCCURRED_A 

// \requires !WRITE_HAS_OCCURRED_A 

for each array A 
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Example including precondition 

// \requires 0 <= tid$1 && tid$1 < N; 

// \requires 0 <= tid$2 && tid$2 < N; 

// \requires tid$1 != tid$2; 

// \requires idx$1 == idx$2; 

// \requires !READ_HAS_OCCURRED_A; 

// \requires !WRITE_HAS_OCCURRED_A; 

void foo(int idx$1, int idx$2) { 

  int x$1; int x$2; 

  int y$1; int y$2; 

  LOG_READ_A(tid$1 + idx$1); 

  CHECK_READ_A(tid$2 + idx$2); 

  havoc(x$1); havoc(x$2); 

  LOG_READ_A(tid$1); 

  CHECK_READ_A(tid$2); 

  havoc(y$1); havoc(y$2); 

  LOG_WRITE_A(tid$1); 

  CHECK_WRITE_A(tid$2); 

} 
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Example restricted to LOG and CHECK calls 

// \requires 0 <= tid$1 && tid$1 < N; 

// \requires 0 <= tid$2 && tid$2 < N; 

// \requires tid$1 != tid$2; 

// \requires idx$1 == idx$2; 

// \requires !READ_HAS_OCCURRED_A; 

// \requires !WRITE_HAS_OCCURRED_A; 

void foo(int idx$1, int idx$2) { 

  LOG_READ_A(tid$1 + idx$1); 

  CHECK_READ_A(tid$2 + idx$2); 

  LOG_READ_A(tid$1); 

  CHECK_READ_A(tid$2); 

  LOG_WRITE_A(tid$1); 

  CHECK_WRITE_A(tid$2); 

} 

What happens to x 

and y is irrelevant 

in this example.  

Let’s omit these 

details to really 

focus on what the 

LOG and CHECK 

calls are doing 
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// other preconditions same as before 

// \requires !READ_HAS_OCCURRED_A; 

// \requires !WRITE_HAS_OCCURRED_A; 

void foo(int idx$1, int idx$2) { 
 

  if(*) { READ_HAS_OCCURRED_A = true; 

          READ_OFFSET_A = tid$1 + idx$1; } 
 

  assert(WRITE_HAS_OCCURRED_A => WRITE_OFFSET_A != tid$2 + idx$2); 
 

  if(*) { READ_HAS_OCCURRED_A = true; 

          READ_OFFSET_A = tid$1; } 
 

  assert(WRITE_HAS_OCCURRED_A => WRITE_OFFSET_A != tid$2); 
 

  if(*) { WRITE_HAS_OCCURRED_A = true; 

          WRITE_OFFSET_A = tid$1; } 
 

  assert(WRITE_HAS_OCCURRED_A => WRITE_OFFSET_A != tid$2); 

  assert(READ_HAS_OCCURRED_A => READ_OFFSET_A != tid$2); 

} 

Inlining all log and check calls 

The non-determinism ensures that some program execution 

checks every pair of potentially racing operations 

// LOG_READ_A(tid$1 + idx$1); 

// CHECK_READ_A(tid$2 + idx$2); 

// LOG_READ_A(tid$1); 

// CHECK_READ_A(tid$2); 

// LOG_WRITE_A(tid$1); 

// CHECK_WRITE_A(tid$2); 
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Checking read from A[tid$1] against 

write to A[tid$2] 

// other preconditions same as before 

// \requires !READ_HAS_OCCURRED_A; 

// \requires !WRITE_HAS_OCCURRED_A; 

void foo(int idx$1, int idx$2) { 
 

  if(*) { READ_HAS_OCCURRED_A = true; 

          READ_OFFSET_A = tid$1 + idx$1; } 
 

  assert(WRITE_HAS_OCCURRED_A => WRITE_OFFSET_A != tid$2 + idx$2); 
 

  if(*) { READ_HAS_OCCURRED_A = true; 

          READ_OFFSET_A = tid$1;       } 
 

  assert(WRITE_HAS_OCCURRED_A => WRITE_OFFSET_A != tid$2); 
 

  if(*) { WRITE_HAS_OCCURRED_A = true; 

          WRITE_OFFSET_A = tid$1; } 
 

  assert(WRITE_HAS_OCCURRED_A => WRITE_OFFSET_A != tid$2); 

  assert(READ_HAS_OCCURRED_A => READ_OFFSET_A != tid$2); 

} 

Possible race checked by 

choosing to log the read, 

then executing the assert.  In 

this case there is no race 
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Checking read from A[tid$1 + idx$1] 

against write to A[tid$2] 

// other preconditions same as before 

// \requires !READ_HAS_OCCURRED_A; 

// \requires !WRITE_HAS_OCCURRED_A; 

void foo(int idx$1, int idx$2) { 
 

  if(*) { READ_HAS_OCCURRED_A = true; 

          READ_OFFSET_A = tid$1 + idx$1; } 
 

  assert(WRITE_HAS_OCCURRED_A => WRITE_OFFSET_A != tid$2 + idx$2); 
 

  if(*) { READ_HAS_OCCURRED_A = true; 

          READ_OFFSET_A = tid$1;       } 
 

  assert(WRITE_HAS_OCCURRED_A => WRITE_OFFSET_A != tid$2); 
 

  if(*) { WRITE_HAS_OCCURRED_A = true; 

          WRITE_OFFSET_A = tid$1; } 
 

  assert(WRITE_HAS_OCCURRED_A => WRITE_OFFSET_A != tid$2); 

  assert(READ_HAS_OCCURRED_A => READ_OFFSET_A != tid$2); 

} 

Possible race checked 

similarly – in this case a 

potential race is detected 
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Implementing barrier() 

void barrier() { 

  assume(!READ_HAS_OCCURRED_A); 

  assume(!WRITE_HAS_OCCURRED_A); 

  // Do this for every array 

} 

The if(*) { … } construction in LOG_READ and 

LOG_WRITE means that there is one path along which 

nothing was logged 

barrier() has the effect of killing all paths except 

this one 
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Informal argument that encoding is sound 

If there can be a write-write race on array A between 

threads i and j there must two statements: 

A[d] = x; // executed by thread i 

A[e] = y; // executed by thread j  

such that threads i and j evaluate d and e respectively 

to the same value 

… // no barrier() 
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Informal argument that encoding is sound 

After insertion of calls to LOG/CHECK_WRITE_A there 

exists an execution trace where: 
 

- tid$1 == i 

- tid$2 == j 
-  LOG_WRITE_A(d$1) is called and a non-deterministic 

choice is made to track the write to d$1 
- In subsequent calls to LOG_WRITE_A a non-

deterministic choice is made not to track the associated 

writes (so write to d$1 is still tracked) 
- Assertion in CHECK_WRITE_A(e$2) fails because e$2 

evaluates to the same value as d$1, which is the value 

that was logged 



17 

Handling loops and conditionals 

Use predicated execution 

Essence of predicated execution: flatten conditional code 

into straight line code 

Example: 

if(x < 100) { 

  x = x + 1; 

} else { 

  y = y + 1; 

} 

P = (x < 100); 

Q = !(x < 100); 

 

x = (P ? x + 1 : x); 

y = (Q ? y + 1 : y); 

make 

predicated 
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Handling loops and conditionals 

Apply predication to kernel so that at every execution 

point there is a predicate determining whether each of the 

threads are enabled 

Add parameters to LOG_READ/WRITE_A and 

CHECK_READ/WRITE_A recording whether first or second 

thread, respectively, is enabled 
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Translating statements with predicate 

x = e; x$1 = P$1 ? e$1 : x$1; 

x$2 = P$2 ? e$2 : x$2; 

Stmt translate(Stmt, P) 

x = A[e]; LOG_READ_A(P$1, e$1); 

CHECK_READ_A(P$2, e$2); 

x$1 = P$1 ? * : x$1; 

x$2 = P$2 ? * : x$2; 

We revise the encoding rules to incorporate a predicate 

of execution for each thread; these are initially true 

LOG and CHECK 

calls take predicate 

as parameter 

We only havoc x$1 

and x$2 if P$1 and 

P$2, respectively, 

are true A[e] = x; LOG_WRITE_A(P$1, e$1); 

CHECK_WRITE_A(P$2, e$2); 

LOG and CHECK calls take 

predicate as parameter 
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Translating statements with predicates 

if(e) { 

  S; 

} else { 

  T; 

} 

Stmt translate(Stmt, P) 

The predicates come from conditionals and loops 

Q$1 = P$1 && e$1; 

Q$2 = P$2 && e$2; 

R$1 = P$1 && !e$1; 

R$2 = P$2 && !e$2; 

translate(S, Q); 

translate(T, R); 

while(e) { 

  S; 

} 

Q$1 = P$1 && e$1; 

Q$2 = P$2 && e$2; 

while(Q$1 || Q$2) { 

    translate(S, Q); 
  Q$1 = Q$1 && e$1; 

  Q$2 = Q$2 && e$2; 

} 

Code for both 

threads becomes 

predicated 

Threads compute 

loop guard into 

predicate 

Q and R are fresh 

Loop until both 

threads are done 

Translate loop 

body using loop 

predicate 

Re-evaluate 

loop guard 
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Translating statements with predicates 

S; 

T; 

Stmt translate(Stmt, P) 

translate(S, P); 

translate(T, P); 

barrier(); barrier(P$1, P$2); 

barrier now takes parameters 

determining whether the 

threads are enabled 
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Implementing predicated LOG_READ_A 

void LOG_READ_A(bool enabled, int offset) { 

  if(enabled) { 

    if(*) { 

      READ_HAS_OCCURRED_A = true; 

      READ_OFFSET_A = offset; 

    } 

  } 

} 

LOG_WRITE_A is similar 

Records whether first 

thread is enabled 

If first thread is not 

enabled it does not 

execute the read, thus 

there is nothing to log 
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Implementing predicated CHECK_WRITE_A 

void CHECK_WRITE_A(bool enabled, int offset) { 

  assert(enabled && WRITE_HAS_OCCURRED_A => 

         WRITE_OFFSET_A != off); 

  assert(enabled && READ_HAS_OCCURRED_A => 

         READ_OFFSET_A != off); 

} 

CHECK_READ_A is similar 

Records whether second 

thread is enabled 

If second thread is not enabled it did not 

execute the write, thus there is nothing to check 
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Implementing barrier with predicates 

void barrier(bool enabled$1, bool enabled$2) { 
 

  assert(enabled$1 == enabled$2); 
 

  if(!enabled$1) { 

    return; 

  } 
 

  // As before: 

  assume(!READ_HAS_OCCURRED_A); 

  assume(!WRITE_HAS_OCCURRED_A); 

  // Do this for every array 

} 

The threads must agree 

on whether they are 

enabled – otherwise we 

have barrier divergence 

barrier does nothing if the 

threads are not enabled 

Otherwise it behaves 

as before 
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Summary 

For each array parameter A: 

- Introduce instrumentation variables to log reads from 

and writes to A 

- Generate procedures to log and check reads and 

writes, using non-determinism to consider all 

possibilities 

- Remove array parameter, and model reads from A 

using non-determinism 

For statements in kernel K: generate corresponding 

statements in sequential program P 

- Interleave two arbitrary threads using round-robin 

schedule 

- Use predication to handle conditionals and loops 
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Summary 

All together this gives a procedure for turning K into a 

sequential program P such that we almost have: 

P is correct => K is free from data races and 

   barrier divergence 

P is correct => All terminating executions of 

   K are free from data races  

   and barrier divergence 

Actually we have something weaker: 

Exercise: why is this the case? 
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Worked example using Boogie 

Live demo (!!!) 



28 

Find out more 

Check out: GPUVerify: 

http://multicore.doc.ic.ac.uk/tools/GPUVerify 

My web page: 

http://www.doc.ic.ac.uk/~afd 

http://multicore.doc.ic.ac.uk 

My group’s page: 

If you would like to talk about doing a PhD at Imperial, 

please email me: afd@imperial.ac.uk 
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Thank you for your attention! 


