
École de Recherche:

 Semantics and Tools for Low-Level

 Concurrent Programming

ENS Lyon

Formal Verification Techniques

for GPU Kernels

Lecture 2

Alastair Donaldson

Imperial College London

www.doc.ic.ac.uk/~afd

afd@imperial.ac.uk

2

Example so far:

__kernel void

foo(__local int* A,

 int idx) {

 int x;

 int y;

 x = A[tid + idx];

 y = A[tid];

 A[tid] = x + y;

}

// \requires 0 <= tid$1 && tid$1 < N;

// \requires 0 <= tid$2 && tid$2 < N;

// \requires tid$1 != tid$2;

// \requires idx$1 == idx$2;

void foo(

) {

 int x$1; int x$2;

 int y$1; int y$2;

 LOG_READ_A(tid$1 + idx$1);

 CHECK_READ_A(tid$2 + idx$2);

 havoc(x$1); havoc(x$2);

 LOG_READ_A(tid$1);

 CHECK_READ_A(tid$2);

 havoc(y$1); havoc(y$2);

 LOG_WRITE_A(tid$1);

 CHECK_WRITE_A(tid$2);

}

int idx$1; int idx$2

3

Implementing LOG_READ_A

Global variables READ_HAS_OCCURED_A and

READ_OFFSET_A collectively log either nothing, or the

offset of a single read from A by the first thread

If READ_HAS_OCCURED_A is false, no read from A by

the first thread has been logged. In this case the value
of READ_OFFSET_A is meaningless

If READ_HAS_OCCURED_A is true, a read from A by the

first thread has been logged, and the offset associated
with this read is READ_OFFSET_A

WRITE_HAS_OCCURED_A and WRITE_OFFSET_A are

used similarly

4

Implementing LOG_READ_A

void LOG_READ_A(int offset) {

 if(*) {

 READ_HAS_OCCURRED_A = true;

 READ_OFFSET_A = offset;

 }

}

Non-deterministically choose whether to
- log this read from A, in which case existing values of

READ_HAS_OCCURRED_A and READ_OFFSET_A are

over-written, or:

- Ignore this read from A, in which case
READ_HAS_OCCURRED_A and READ_OFFSET_A are

left alone

* is an

expression that

evaluates non-

deterministically

5

Implementing LOG_WRITE_A

void LOG_WRITE_A(int offset) {

 if(*) {

 WRITE_HAS_OCCURRED_A = true;

 WRITE_OFFSET_A = offset;

 }

}

Similar to LOG_READ_A

6

Implementing CHECK_READ_A

void CHECK_READ_A(int offset) {

 assert(WRITE_HAS_OCCURRED_A =>

 WRITE_OFFSET_A != offset);

}

A read from A at offset by second thread is OK unless

first thread has logged a write to A at this offset

Whether first thread has logged a write to A is
determined by WRITE_HAS_OCCURRED_A

If WRITE_HAS_OCCURRED_A is true then

WRITE_OFFSET_A records the offset that was written

to. This must be different from offset

7

Implementing CHECK_WRITE_A

void CHECK_WRITE_A(int offset) {

 assert(WRITE_HAS_OCCURRED_A =>

 WRITE_OFFSET_A != offset);

 assert(READ_HAS_OCCURRED_A =>

 READ_OFFSET_A != offset);

}

This is similar to CHECK_READ_A, but there is a little

more to check:

We must check that write by second thread does not

conflict with a write or a read by first thread

8

Initially, no reads or writes are logged

We specify this via the precondition:

// \requires !READ_HAS_OCCURRED_A

// \requires !WRITE_HAS_OCCURRED_A

for each array A

9

Example including precondition

// \requires 0 <= tid$1 && tid$1 < N;

// \requires 0 <= tid$2 && tid$2 < N;

// \requires tid$1 != tid$2;

// \requires idx$1 == idx$2;

// \requires !READ_HAS_OCCURRED_A;

// \requires !WRITE_HAS_OCCURRED_A;

void foo(int idx$1, int idx$2) {

 int x$1; int x$2;

 int y$1; int y$2;

 LOG_READ_A(tid$1 + idx$1);

 CHECK_READ_A(tid$2 + idx$2);

 havoc(x$1); havoc(x$2);

 LOG_READ_A(tid$1);

 CHECK_READ_A(tid$2);

 havoc(y$1); havoc(y$2);

 LOG_WRITE_A(tid$1);

 CHECK_WRITE_A(tid$2);

}

10

Example restricted to LOG and CHECK calls

// \requires 0 <= tid$1 && tid$1 < N;

// \requires 0 <= tid$2 && tid$2 < N;

// \requires tid$1 != tid$2;

// \requires idx$1 == idx$2;

// \requires !READ_HAS_OCCURRED_A;

// \requires !WRITE_HAS_OCCURRED_A;

void foo(int idx$1, int idx$2) {

 LOG_READ_A(tid$1 + idx$1);

 CHECK_READ_A(tid$2 + idx$2);

 LOG_READ_A(tid$1);

 CHECK_READ_A(tid$2);

 LOG_WRITE_A(tid$1);

 CHECK_WRITE_A(tid$2);

}

What happens to x

and y is irrelevant

in this example.

Let’s omit these

details to really

focus on what the

LOG and CHECK

calls are doing

11

// other preconditions same as before

// \requires !READ_HAS_OCCURRED_A;

// \requires !WRITE_HAS_OCCURRED_A;

void foo(int idx$1, int idx$2) {

 if(*) { READ_HAS_OCCURRED_A = true;

 READ_OFFSET_A = tid$1 + idx$1; }

 assert(WRITE_HAS_OCCURRED_A => WRITE_OFFSET_A != tid$2 + idx$2);

 if(*) { READ_HAS_OCCURRED_A = true;

 READ_OFFSET_A = tid$1; }

 assert(WRITE_HAS_OCCURRED_A => WRITE_OFFSET_A != tid$2);

 if(*) { WRITE_HAS_OCCURRED_A = true;

 WRITE_OFFSET_A = tid$1; }

 assert(WRITE_HAS_OCCURRED_A => WRITE_OFFSET_A != tid$2);

 assert(READ_HAS_OCCURRED_A => READ_OFFSET_A != tid$2);

}

Inlining all log and check calls

The non-determinism ensures that some program execution

checks every pair of potentially racing operations

// LOG_READ_A(tid$1 + idx$1);

// CHECK_READ_A(tid$2 + idx$2);

// LOG_READ_A(tid$1);

// CHECK_READ_A(tid$2);

// LOG_WRITE_A(tid$1);

// CHECK_WRITE_A(tid$2);

12

Checking read from A[tid$1] against

write to A[tid$2]

// other preconditions same as before

// \requires !READ_HAS_OCCURRED_A;

// \requires !WRITE_HAS_OCCURRED_A;

void foo(int idx$1, int idx$2) {

 if(*) { READ_HAS_OCCURRED_A = true;

 READ_OFFSET_A = tid$1 + idx$1; }

 assert(WRITE_HAS_OCCURRED_A => WRITE_OFFSET_A != tid$2 + idx$2);

 if(*) { READ_HAS_OCCURRED_A = true;

 READ_OFFSET_A = tid$1; }

 assert(WRITE_HAS_OCCURRED_A => WRITE_OFFSET_A != tid$2);

 if(*) { WRITE_HAS_OCCURRED_A = true;

 WRITE_OFFSET_A = tid$1; }

 assert(WRITE_HAS_OCCURRED_A => WRITE_OFFSET_A != tid$2);

 assert(READ_HAS_OCCURRED_A => READ_OFFSET_A != tid$2);

}

Possible race checked by

choosing to log the read,

then executing the assert. In

this case there is no race

13

Checking read from A[tid$1 + idx$1]

against write to A[tid$2]

// other preconditions same as before

// \requires !READ_HAS_OCCURRED_A;

// \requires !WRITE_HAS_OCCURRED_A;

void foo(int idx$1, int idx$2) {

 if(*) { READ_HAS_OCCURRED_A = true;

 READ_OFFSET_A = tid$1 + idx$1; }

 assert(WRITE_HAS_OCCURRED_A => WRITE_OFFSET_A != tid$2 + idx$2);

 if(*) { READ_HAS_OCCURRED_A = true;

 READ_OFFSET_A = tid$1; }

 assert(WRITE_HAS_OCCURRED_A => WRITE_OFFSET_A != tid$2);

 if(*) { WRITE_HAS_OCCURRED_A = true;

 WRITE_OFFSET_A = tid$1; }

 assert(WRITE_HAS_OCCURRED_A => WRITE_OFFSET_A != tid$2);

 assert(READ_HAS_OCCURRED_A => READ_OFFSET_A != tid$2);

}

Possible race checked

similarly – in this case a

potential race is detected

14

Implementing barrier()

void barrier() {

 assume(!READ_HAS_OCCURRED_A);

 assume(!WRITE_HAS_OCCURRED_A);

 // Do this for every array

}

The if(*) { … } construction in LOG_READ and

LOG_WRITE means that there is one path along which

nothing was logged

barrier() has the effect of killing all paths except

this one

15

Informal argument that encoding is sound

If there can be a write-write race on array A between

threads i and j there must two statements:

A[d] = x; // executed by thread i

A[e] = y; // executed by thread j

such that threads i and j evaluate d and e respectively

to the same value

… // no barrier()

16

Informal argument that encoding is sound

After insertion of calls to LOG/CHECK_WRITE_A there

exists an execution trace where:

- tid$1 == i

- tid$2 == j
- LOG_WRITE_A(d$1) is called and a non-deterministic

choice is made to track the write to d$1
- In subsequent calls to LOG_WRITE_A a non-

deterministic choice is made not to track the associated

writes (so write to d$1 is still tracked)
- Assertion in CHECK_WRITE_A(e$2) fails because e$2

evaluates to the same value as d$1, which is the value

that was logged

17

Handling loops and conditionals

Use predicated execution

Essence of predicated execution: flatten conditional code

into straight line code

Example:

if(x < 100) {

 x = x + 1;

} else {

 y = y + 1;

}

P = (x < 100);

Q = !(x < 100);

x = (P ? x + 1 : x);

y = (Q ? y + 1 : y);

make

predicated

18

Handling loops and conditionals

Apply predication to kernel so that at every execution

point there is a predicate determining whether each of the

threads are enabled

Add parameters to LOG_READ/WRITE_A and

CHECK_READ/WRITE_A recording whether first or second

thread, respectively, is enabled

19

Translating statements with predicate

x = e; x$1 = P$1 ? e$1 : x$1;

x$2 = P$2 ? e$2 : x$2;

Stmt translate(Stmt, P)

x = A[e]; LOG_READ_A(P$1, e$1);

CHECK_READ_A(P$2, e$2);

x$1 = P$1 ? * : x$1;

x$2 = P$2 ? * : x$2;

We revise the encoding rules to incorporate a predicate

of execution for each thread; these are initially true

LOG and CHECK

calls take predicate

as parameter

We only havoc x$1

and x$2 if P$1 and

P$2, respectively,

are true A[e] = x; LOG_WRITE_A(P$1, e$1);

CHECK_WRITE_A(P$2, e$2);

LOG and CHECK calls take

predicate as parameter

20

Translating statements with predicates

if(e) {

 S;

} else {

 T;

}

Stmt translate(Stmt, P)

The predicates come from conditionals and loops

Q$1 = P$1 && e$1;

Q$2 = P$2 && e$2;

R$1 = P$1 && !e$1;

R$2 = P$2 && !e$2;

translate(S, Q);

translate(T, R);

while(e) {

 S;

}

Q$1 = P$1 && e$1;

Q$2 = P$2 && e$2;

while(Q$1 || Q$2) {

 translate(S, Q);
 Q$1 = Q$1 && e$1;

 Q$2 = Q$2 && e$2;

}

Code for both

threads becomes

predicated

Threads compute

loop guard into

predicate

Q and R are fresh

Loop until both

threads are done

Translate loop

body using loop

predicate

Re-evaluate

loop guard

21

Translating statements with predicates

S;

T;

Stmt translate(Stmt, P)

translate(S, P);

translate(T, P);

barrier(); barrier(P$1, P$2);

barrier now takes parameters

determining whether the

threads are enabled

22

Implementing predicated LOG_READ_A

void LOG_READ_A(bool enabled, int offset) {

 if(enabled) {

 if(*) {

 READ_HAS_OCCURRED_A = true;

 READ_OFFSET_A = offset;

 }

 }

}

LOG_WRITE_A is similar

Records whether first

thread is enabled

If first thread is not

enabled it does not

execute the read, thus

there is nothing to log

23

Implementing predicated CHECK_WRITE_A

void CHECK_WRITE_A(bool enabled, int offset) {

 assert(enabled && WRITE_HAS_OCCURRED_A =>

 WRITE_OFFSET_A != off);

 assert(enabled && READ_HAS_OCCURRED_A =>

 READ_OFFSET_A != off);

}

CHECK_READ_A is similar

Records whether second

thread is enabled

If second thread is not enabled it did not

execute the write, thus there is nothing to check

24

Implementing barrier with predicates

void barrier(bool enabled$1, bool enabled$2) {

 assert(enabled$1 == enabled$2);

 if(!enabled$1) {

 return;

 }

 // As before:

 assume(!READ_HAS_OCCURRED_A);

 assume(!WRITE_HAS_OCCURRED_A);

 // Do this for every array

}

The threads must agree

on whether they are

enabled – otherwise we

have barrier divergence

barrier does nothing if the

threads are not enabled

Otherwise it behaves

as before

25

Summary

For each array parameter A:

- Introduce instrumentation variables to log reads from

and writes to A

- Generate procedures to log and check reads and

writes, using non-determinism to consider all

possibilities

- Remove array parameter, and model reads from A

using non-determinism

For statements in kernel K: generate corresponding

statements in sequential program P

- Interleave two arbitrary threads using round-robin

schedule

- Use predication to handle conditionals and loops

26

Summary

All together this gives a procedure for turning K into a

sequential program P such that we almost have:

P is correct => K is free from data races and

 barrier divergence

P is correct => All terminating executions of

 K are free from data races

 and barrier divergence

Actually we have something weaker:

Exercise: why is this the case?

27

Worked example using Boogie

Live demo (!!!)

28

Find out more

Check out: GPUVerify:

http://multicore.doc.ic.ac.uk/tools/GPUVerify

My web page:

http://www.doc.ic.ac.uk/~afd

http://multicore.doc.ic.ac.uk

My group’s page:

If you would like to talk about doing a PhD at Imperial,

please email me: afd@imperial.ac.uk

29

Bibliography

From my group:

 A. Betts, N. Chong, A. Donaldson, S. Qadeer, P. Thomson,

GPUVerify, a Verifier for GPU Kernels, OOPSLA 2012

 P. Collingbourne, A. Donaldson, J. Ketema, S. Qadeer, Interleaving

and Lock-Step Semantics for Analysis and Verification of GPU

Kernels, ESOP 2013

University of Utah:

 G. Li, G. Gopalakrishnan, Scalable SMT-Based Verification of GPU

Kernel Functions, FSE 2010

 G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, S. Rajan,

GKLEE: Concolic Verification and Test Generation for GPUs, PPoPP

2012

University of California, San Diego

 A. Leung, M. Gupta, Y. Agarwal, R. Gupta, R. Jhala, S. Lerner,

Verifying GPU Kernels by Test Amplification. PLDI 2012

30

Thank you for your attention!

