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The challenges of concurrency 

Let’s consider a simple concurrent program with three threads: 

A data stream thread which repeatedly writes random values 

to a memory location 

A sampler thread which repeatedly reads from this memory 

location, printing the value that was read to the console 

A main thread which launches the data stream and sampler 

threads 



3 

#include <stdio.h> 

#include <pthread.h> 
 

volatile int* volatile p = NULL; 
 

void* dataStream(void* unused) { 

  usleep(1); 

  p = (int*)malloc(sizeof(int)); 

  while(1) { 

    *p = rand(); 

  }     

} 
 

void* sampler(void* unused) { 

  while(1) { 

    printf("%d\n", *p); 

  }     

} 
int main() { 

  pthread_t dataStreamHandle; 

  pthread_t samplerHandle; 

  pthread_create(&dataStreamHandle, NULL, dataStream, NULL); 

  pthread_create(&samplerHandle, NULL, sampler, NULL); 

  pthread_join(dataStreamHandle, NULL); 

  pthread_join(samplerHandle, NULL); 

} 

volatile necessary to tell the 

compiler that p, and/or its 

contents, are subject to 

change by other threads 

What can go wrong with 

this program? 

Possible for sampler to begin 

sampling before p has been 

allocated 

Big problem: the bug does 

not always manifest!  (Adding 

usleep(…) helps to expose it 

for illustration purposes) 
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Buggy behaviour depends on schedule 

main 

pthread_create 

pthread_create 

dataStream 

sampler 

p = (int*)malloc(…) 

*p = rand() 

*p = rand() 

printf(“%d\n”, *p) 

Program will not crash if malloc in dataStream happens 
before any printf(“%d\n”, *p) in sampler 
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Buggy behaviour depends on schedule 

main 

pthread_create 

pthread_create 

dataStream 

sampler 

p = (int*)malloc(…) 

printf(“%d\n”, *p) 

…but if printf(“%d\n”, *p) the program dereferences 

a null pointer 

Null pointer 

dereference 
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Try it for yourself 

Compile, then run many times: 
 

 

$ gcc –o main test.c 

$ ./main 

Segmentation fault (core dumped) 

$ ./main 

1270744533 

1670651648 

364481212 

… 

$ ./main 

Segmentation fault (core dumped) 

 

etc. 
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Other issues related to the example: 

Sampler may read from data stream after allocation but 

before a data value is written – data race: 

main 

pthread_create 

pthread_create 

dataStream 

sampler 

p = (int*)malloc(…) 

*p = rand() 

printf(“%d\n”, *p) 

Value printed does 

not come from data 

stream 
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Other issues related to the example: 

Which values are sampled depends on thread schedule: 

dataStream 

p = (int*)malloc(…) 

*p = rand() 

printf(“%d\n”, *p) 

*p = rand() 

printf(“%d\n”, *p) 

sampler 

dataStream 

p = (int*)malloc(…) 

*p = rand() 

printf(“%d\n”, *p) 

*p = rand() 

printf(“%d\n”, *p) 

sampler 

v.s. 

…thus there are further data races on *p, but since sampling is 

random anyway these are benign – they do not matter 
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Analysing concurrent programs: challenge 

Something simple like: 
 

 

x = 0; 

x = x + 1; 

assert(x == 1); 

 

may not be correct if x can be modified by 
other threads! 
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Analysing concurrent programs: solutions 

Four main approaches have been explored by researchers: 

Stress testing 
Run concurrent program 100s of times, injecting random 

delays so that a variety of schedules are exhibited 

Schedule enumeration 
Run concurrent program using a controlled scheduler 

Systematically explore all possible schedules 

Static concurrent program verification 
Extend program verification techniques (pre- and post-

conditions, loop invariants) to take account of concurrency 

Reducing concurrent program verification to 
sequential program verification 

Transform concurrent program into semantically equivalent 

sequential program, then apply existing techniques 
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We will focus on: 

Allows re-use of techniques for sequential program analysis 

which are well understood 

Only works in restricted circumstances 

We shall study an approach for reducing verification of 

concurrent programs to a sequential program verification 

task for a certain class of software: GPU kernels 

Reducing concurrent program verification to 
sequential program verification 
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Graphics processing units (GPUs) 

Originally designed to accelerate graphics processing 

Early GPUs: limited functionality, tailored specifically 
towards graphics 

Recently GPUs have become more powerful and general 

purpose.  Widely used in parallel programming to 
accelerate tasks including: 

GPU has many parallel processing elements: graphics 
operations on sets of pixels are inherently parallel 

Medical imaging Financial simulation 

Computational 
fluid dynamics 

DNA sequence 
alignment 

…and many 
more 

Computer vision 
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Many PEs 

Processing 

element (PE) 

Private memory 

Organised 

into groups 
Local memory 

Local memory 

Local memory 

PEs in same 

group share 

memory 

All PEs share 

global memory 

G
lo

b
a
l m

e
m

o
ry

 
Graphics processing units (GPUs) 
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GPU-accelerated systems 

H
o

s
t m

e
m

o
ry

 
GPU Host (multicore PC) 

Copy data 

and kernel 

code 

Copy back 

results 

Invoke 

kernel 

Host PC copies data and code into GPU memory 
 

Code is a kernel function which is executed by each PE 
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Data races in GPU kernels 

A data race occurs if: 

- two distinct threads access the same memory 

location 

- at least one of the accesses is a write 

- the accesses are not separated by a barrier 

synchronisation operation 

More on this later 
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Data races in GPU kernels 

Intra-group 

data race 

Inter-group 

data race 

Lead to all kinds of problems!  

Almost always accidental and unwanted: data races in 

GPU kernels are not usually benign   
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Data races in GPU kernels 

We shall look at a technique for analysing whether a 

GPU kernel can exhibit data races 

We shall restrict attention to intra-group data races 

Henceforth, let’s assume that all threads are in the same 

group 
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GPU kernel example 

__kernel void 

add_neighbour(                          ) { 

  A[tid] = A[tid] + A[tid + offset]; 

} 

Read/write data race 

__local int* A , int offset 

Indicates that function is 

the kernel’s entry point 

Indicates that A is an 

array stored in group’s 

local memory 

Built-in variable which 

contains thread’s id 

All threads execute add_neighbour – host 

specifies how many threads should run 

Syntax used here is (more or less) 

OpenCL, an industry standard for 

multicore computing 
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Illustration of data race 

__kernel void 

add_neighbour(                          ) { 

  A[tid] = A[tid] + A[tid + offset]; 

} 

__local int* A , int offset 

Suppose offset == 1 

Thread 0: reads from A[tid + offset], i.e., A[1] 

Thread 1: writes to A[tid], i.e., A[1] 

No guarantee about the order in which these accesses 

will occur 

Similar data races possible between other pairs of 

adjacent threads 
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Illustrating the effects of a data race 

Suppose: 
- offset == 1 

- A initially contains { 1, 1, 1, 1, 1 } 

- there are four threads 

{ 1, 1, 1, 1, 1 } 

{ 2, 1, 1, 1, 1 } 

{ 2, 2, 1, 1, 1 } 

{ 2, 2, 2, 1, 1 } 

{ 2, 2, 2, 2, 1 } 

{ 1, 1, 1, 1, 1 } 

{ 1, 1, 1, 2, 1 } 

{ 1, 1, 3, 2, 1 } 

{ 1, 4, 3, 2, 1 } 

{ 5, 4, 3, 2, 1 } 

thread 0 

Let’s see how A evolves for two particular schedules 

thread 1 

thread 2 

thread 3 

thread 3 

thread 2 

thread 1 

thread 0 

Completely 

different results! 
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Barrier synchronisation 

barrier() 

When a thread reaches barrier() it waits until all threads 

reach the barrier 

When all threads have reached the barrier, the threads 

can proceed past the barrier 

Reads and writes before the barrier are guaranteed to 

have completed after the barrier 

Used to synchronise threads 

Note: all threads must reach the same barrier – 

illegal for threads to reach different barriers  

Related to, but different from memory barrier 

in CPU instruction set 
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Using barrier to avoid a data race 

__kernel void 

add_neighbour(__local int* A, int offset) { 

  int temp = A[tid + offset]; 

  barrier(); 

  A[tid] = A[tid] + temp; 

} 

Accesss cannot be 

concurrent 
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Focussing data race analysis 

... 

barrier(); 

 

 

 

 

 

 

barrier(); 

... 

Barrier-free 

code region 

Race may be due to two threads 

executing statements within the 

region 

We cannot have a race caused 

by a statement in the region and 

a statement outside the region 

All threads are always executing in a region between 

two barriers: 

Data race analysis can be localised to 

focus on regions between barriers 
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Reducing thread schedules 

barrier(); 
 

  S1; 

  S2; 

  ... 

  Sk 
 

barrier(); 

 

With n threads, roughly how many possible thread 

schedules are there between these barriers, assuming 

each statement is atomic? 

Thread 2 executes k statements: 
(𝑛 − 1) × 𝑘

𝑘
 choices for these 

 etc. 

Total execution length is 𝑛 × 𝑘 

Thread 1 executes k statements: 
𝑛 × 𝑘

𝑘
 choices for these 

Number of possible schedules: in the order of 𝑛𝑘  
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Reducing thread schedules 

Do we really need to consider all of these schedules to 

detect data races? 

No: actually is suffices to consider just one schedule, and 

it can be any schedule 
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Any schedule will do!  For example: 

barrier(); // A 

 

 

 

 

 

 

 

 

 

 

barrier(); // B 

Run thread 0 from A to B 

Log all accesses 

Run thread 1 from A to B 

Log all accesses 

Check against thread 0 

Run thread 2 from A to B 

Log all accesses 

Check against threads 0 and 1 

Run thread N-1 from A to B 

Log all accesses 

Check against threads 0..N-2 

. . . 

Abort on race 

If data race exists it will 

be detected: abort 

No data races: chosen 

schedule equivalent to 

all others 

Completely avoids 

reasoning about interleavings! 
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Reducing thread schedules 

Because we can choose a single thread schedule, we 

can view a barrier region containing k statements as a 

sequential program containing n × k statements 

This is good: it means we are back in the world of 

sequential program analysis 

But in practice it is quite normal for a GPU kernel to be 

executed by e.g. 1024 threads 

Leads to an intractably large sequential program 

Can we do better? 
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Yes: just two threads will do! 

barrier(); // A 

 

 

 

 

 

barrier(); // B 

 

Run thread i from A to B 

Log all accesses 

Run thread j from A to B 

Check all accesses against thread i 

Abort on race 

Choose arbitrary i, j ∈ { 0, 1, …, N-1 } with i ≠ j 

If data race exists it will be exposed for some choice 

of i and j.  If we can prove data race freedom for 

arbitrary i and j then the region must be data race free 
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Is this sound? 

barrier(); // A 

 

 

 

 

barrier(); // B 

 

 

 

 

barrier(); // C 

Run thread i from A to B 

Log all accesses 

Run thread j from A to B 

Check all accesses against thread i 

Abort on race 

Run thread i from B to C 

Log all accesses 

Run thread j from B to C 

Check all accesses against thread i 

Abort on race 

No: it is as if only i 

and j exist, and other 

threads have no 

effect! 

 

Solution: make 

shared state abstract  
- simple idea: havoc 

the shared state at 

each barrier 

- even simpler: 

remove shared state 

completely 

havoc(x) means “set x 

to an arbitrary value” 
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GPUVerify technique and tool 

Exploit: any schedule will do 

two threads will do 

shared state abstraction 

+ 

+ 

to compile massively parallel kernel K into sequential 

program P such that (roughly): 

(no assertion 

failures) 

P correct 
K free from data races  => 

Next: technical details of how this works 
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Demo of GPUVerify 

Also try it yourself: 

http://multicore.doc.ic.ac.uk/tools/GPUVerify 
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Data race analysis for straight line kernels 

Assume kernel has form: 

__kernel void foo( <parameters, including __local arrays> ) { 
 

  <local variable declarations> 
 

  S1; 

  S2; 

  ... 

  Sk; 
 

} 

where each statement Si has one of the following forms: 

x = e 

x = A[e] 

A[e] = x 

barrier() 

where: 
- x denotes a local variable 

- e denotes an expression over local variables 
- A denotes a __local array parameter 
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Data race analysis for straight line kernels 

Restricting statements to these forms: 

x = e 

x = A[e] 

A[e] = x

  barrier() 

where: 
- x denotes a local variable 

- e denotes an expression over local variables 

and tid 
- A denotes a __local array parameter 

means: 

- A statement involves at most one load from / 

stores to local memory 

- There is no conditional or loop code 

Easy to enforce by pre-

processing the code 

We will drop this 

restriction later 
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Our aim 

We want to translate kernel into sequential program that: 

- Models execution of two arbitrary threads using 

some fixed schedule 

- Detects data races 

- Treats shared state abstractly 

Call original GPU kernel K 

Call resulting sequential program P 
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Introducing two arbitrary threads 

K has implicit variable tid which gives the id of a thread  
 

Suppose N is the total number of threads 

In P, introduce two global variables: 

int tid$1; 

int tid$2; 

and preconditions: 

\requires 0 <= tid$1 && tid$1 < N; 

\requires 0 <= tid$2 && tid$2 < N; 

\requires tid$1 != tid$2; 

Threads must both 

be in range 

Threads must be 

different 

…but otherwise the threads are arbitrary 
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Race checking instrumentation 

For each __local array parameter A in K introduce four 

global variables: 

bool READ_HAS_OCCURRED_A; 

bool WRITE_HAS_OCCURRED_A; 

int READ_OFFSET_A; 

int WRITE_OFFSET_A; 

and four procedures: 

void LOG_READ_A(int offset); 
 

void LOG_WRITE_A(int offset); 
 

void CHECK_READ_A(int offset); 
 

void CHECK_WRITE_A(int offset); 

We shall shortly 

discuss the 

implementation of 

these 

Get rid of parameter A in P 

We shall shortly 

discuss the 

purpose of these 
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Example illustrating concepts so far: 

__kernel void foo(__local int* A, __local int* B, 

                  int idx) { 

  ... 

} 

int tid$1; 

int tid$2; 

 

bool READ_HAS_OCCURRED_A;    bool READ_HAS_OCCURRED_B; 

bool WRITE_HAS_OCCURRED_A;   bool WRITE_HAS_OCCURRED_B; 

int READ_OFFSET_A;           int READ_OFFSET_B; 

int WRITE_OFFSET_A;          int WRITE_OFFSET_B; 

 

// \requires 0 <= tid$1 && tid$1 < N; 

// \requires 0 <= tid$2 && tid$2 < N; 

// \requires tid$1 != tid$2; 

void foo(int idx) { 

  ... 

} 

Form of K 

Form of P 
Instrumentation 

variables for A 

Instrumentation 

variables for B 

A and B 

have gone 

Constraining tid$1 and 

tid$2 to be arbitrary, 

distinct threads 

Ids for 

two 

threads 
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Duplicating local variable declarations 

Local variable declaration: 

int x 
int x$1; 

int x$2; duplicated to become: 

Reflects fact that each thread has a copy of x 

Notation: for an expression e over local variables and tid we 

use e$1 to denote e with every occurrence of a variable x 

replaced with x$1 

e$2 is similar 

E.g., if e is a + tid - x e$2 is 

Non-array parameter declaration duplicated similarly. 
 

Non-array parameter x initially assumed to be equal 

between threads: \requires x$1 == x$2 

a$2 + tid$2 - x$2 
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Translating statements of K 

x = e; x$1 = e$1; 

x$2 = e$2; 

Log location from which 

first thread reads 

Check read by second 

thread does not conflict with 

any prior write by first thread 

Over-approximate effect of 

read by making receiving 

variables arbitrary 

Stmt translate(Stmt) 

x = A[e]; LOG_READ_A(e$1); 

CHECK_READ_A(e$2); 

havoc(x$1); 

havoc(x$2); 

Encode the statements of K for both threads using round-

robin schedule for the two threads being modelled 

We have removed array A.  Thus we over-approximate 

the effect of reading from A using havoc.  We make no 

assumptions about what A contains 
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Translating statements of K (continued) 

A[e] = x; LOG_WRITE_A(e$1); 

CHECK_WRITE_A(e$2); 

// nothing 

Log location to which 

first thread writes 

Check write by second 

thread does not conflict 

with any prior read or 

write by first thread 

The write itself has no 

effect in because the 

array A has been 

removed 

Stmt translate(Stmt) 

barrier(); barrier(); 

We shall give barrier() a special 

meaning in translated program 

S; 

T; 

translate(S); 

translate(T); 
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Example so far: 

__kernel void 

foo(__local int* A, 

            int idx ) { 
 

  int x; 
 

  int y; 
 

  x = A[tid + idx]; 

 

 
 

  y = A[tid]; 

 

 
 

  A[tid] = x + y; 

 

} 

// \requires 0 <= tid$1 && tid$1 < N; 

// \requires 0 <= tid$2 && tid$2 < N; 

// \requires tid$1 != tid$2; 

// \requires idx$1 == idx$2; 

void foo( 

                       ) { 
 

  int x$1; int x$2; 
 

  int y$1; int y$2; 
 

  LOG_READ_A(tid$1 + idx$1); 

  CHECK_READ_A(tid$2 + idx$2); 

  havoc(x$1); havoc(x$2); 
 

  LOG_READ_A(tid$1); 

  CHECK_READ_A(tid$2); 

  havoc(y$1); havoc(y$2); 
 

  LOG_WRITE_A(tid$1); 

  CHECK_WRITE_A(tid$2); 

} 

int idx$1; int idx$2 


