
École de Recherche:

 Semantics and Tools for Low-Level

 Concurrent Programming

ENS Lyon

Formal Verification Techniques

for GPU Kernels

Lecture 1

Alastair Donaldson

Imperial College London

www.doc.ic.ac.uk/~afd

afd@imperial.ac.uk

2

The challenges of concurrency

Let’s consider a simple concurrent program with three threads:

A data stream thread which repeatedly writes random values

to a memory location

A sampler thread which repeatedly reads from this memory

location, printing the value that was read to the console

A main thread which launches the data stream and sampler

threads

3

#include <stdio.h>

#include <pthread.h>

volatile int* volatile p = NULL;

void* dataStream(void* unused) {

 usleep(1);

 p = (int*)malloc(sizeof(int));

 while(1) {

 *p = rand();

 }

}

void* sampler(void* unused) {

 while(1) {

 printf("%d\n", *p);

 }

}
int main() {

 pthread_t dataStreamHandle;

 pthread_t samplerHandle;

 pthread_create(&dataStreamHandle, NULL, dataStream, NULL);

 pthread_create(&samplerHandle, NULL, sampler, NULL);

 pthread_join(dataStreamHandle, NULL);

 pthread_join(samplerHandle, NULL);

}

volatile necessary to tell the

compiler that p, and/or its

contents, are subject to

change by other threads

What can go wrong with

this program?

Possible for sampler to begin

sampling before p has been

allocated

Big problem: the bug does

not always manifest! (Adding

usleep(…) helps to expose it

for illustration purposes)

4

Buggy behaviour depends on schedule

main

pthread_create

pthread_create

dataStream

sampler

p = (int*)malloc(…)

*p = rand()

*p = rand()

printf(“%d\n”, *p)

Program will not crash if malloc in dataStream happens
before any printf(“%d\n”, *p) in sampler

5

Buggy behaviour depends on schedule

main

pthread_create

pthread_create

dataStream

sampler

p = (int*)malloc(…)

printf(“%d\n”, *p)

…but if printf(“%d\n”, *p) the program dereferences

a null pointer

Null pointer

dereference

6

Try it for yourself

Compile, then run many times:

$ gcc –o main test.c

$./main

Segmentation fault (core dumped)

$./main

1270744533

1670651648

364481212

…

$./main

Segmentation fault (core dumped)

etc.

7

Other issues related to the example:

Sampler may read from data stream after allocation but

before a data value is written – data race:

main

pthread_create

pthread_create

dataStream

sampler

p = (int*)malloc(…)

*p = rand()

printf(“%d\n”, *p)

Value printed does

not come from data

stream

8

Other issues related to the example:

Which values are sampled depends on thread schedule:

dataStream

p = (int*)malloc(…)

*p = rand()

printf(“%d\n”, *p)

*p = rand()

printf(“%d\n”, *p)

sampler

dataStream

p = (int*)malloc(…)

*p = rand()

printf(“%d\n”, *p)

*p = rand()

printf(“%d\n”, *p)

sampler

v.s.

…thus there are further data races on *p, but since sampling is

random anyway these are benign – they do not matter

9

Analysing concurrent programs: challenge

Something simple like:

x = 0;

x = x + 1;

assert(x == 1);

may not be correct if x can be modified by
other threads!

10

Analysing concurrent programs: solutions

Four main approaches have been explored by researchers:

Stress testing
Run concurrent program 100s of times, injecting random

delays so that a variety of schedules are exhibited

Schedule enumeration
Run concurrent program using a controlled scheduler

Systematically explore all possible schedules

Static concurrent program verification
Extend program verification techniques (pre- and post-

conditions, loop invariants) to take account of concurrency

Reducing concurrent program verification to
sequential program verification

Transform concurrent program into semantically equivalent

sequential program, then apply existing techniques

11

We will focus on:

Allows re-use of techniques for sequential program analysis

which are well understood

Only works in restricted circumstances

We shall study an approach for reducing verification of

concurrent programs to a sequential program verification

task for a certain class of software: GPU kernels

Reducing concurrent program verification to
sequential program verification

12

Graphics processing units (GPUs)

Originally designed to accelerate graphics processing

Early GPUs: limited functionality, tailored specifically
towards graphics

Recently GPUs have become more powerful and general

purpose. Widely used in parallel programming to
accelerate tasks including:

GPU has many parallel processing elements: graphics
operations on sets of pixels are inherently parallel

Medical imaging Financial simulation

Computational
fluid dynamics

DNA sequence
alignment

…and many
more

Computer vision

13

Many PEs

Processing

element (PE)

Private memory

Organised

into groups
Local memory

Local memory

Local memory

PEs in same

group share

memory

All PEs share

global memory

G
lo

b
a
l m

e
m

o
ry

Graphics processing units (GPUs)

14

GPU-accelerated systems

H
o

s
t m

e
m

o
ry

GPU Host (multicore PC)

Copy data

and kernel

code

Copy back

results

Invoke

kernel

Host PC copies data and code into GPU memory

Code is a kernel function which is executed by each PE

15

Data races in GPU kernels

A data race occurs if:

- two distinct threads access the same memory

location

- at least one of the accesses is a write

- the accesses are not separated by a barrier

synchronisation operation

More on this later

16

Data races in GPU kernels

Intra-group

data race

Inter-group

data race

Lead to all kinds of problems!

Almost always accidental and unwanted: data races in

GPU kernels are not usually benign

17

Data races in GPU kernels

We shall look at a technique for analysing whether a

GPU kernel can exhibit data races

We shall restrict attention to intra-group data races

Henceforth, let’s assume that all threads are in the same

group

18

GPU kernel example

__kernel void

add_neighbour() {

 A[tid] = A[tid] + A[tid + offset];

}

Read/write data race

__local int* A , int offset

Indicates that function is

the kernel’s entry point

Indicates that A is an

array stored in group’s

local memory

Built-in variable which

contains thread’s id

All threads execute add_neighbour – host

specifies how many threads should run

Syntax used here is (more or less)

OpenCL, an industry standard for

multicore computing

19

Illustration of data race

__kernel void

add_neighbour() {

 A[tid] = A[tid] + A[tid + offset];

}

__local int* A , int offset

Suppose offset == 1

Thread 0: reads from A[tid + offset], i.e., A[1]

Thread 1: writes to A[tid], i.e., A[1]

No guarantee about the order in which these accesses

will occur

Similar data races possible between other pairs of

adjacent threads

20

Illustrating the effects of a data race

Suppose:
- offset == 1

- A initially contains { 1, 1, 1, 1, 1 }

- there are four threads

{ 1, 1, 1, 1, 1 }

{ 2, 1, 1, 1, 1 }

{ 2, 2, 1, 1, 1 }

{ 2, 2, 2, 1, 1 }

{ 2, 2, 2, 2, 1 }

{ 1, 1, 1, 1, 1 }

{ 1, 1, 1, 2, 1 }

{ 1, 1, 3, 2, 1 }

{ 1, 4, 3, 2, 1 }

{ 5, 4, 3, 2, 1 }

thread 0

Let’s see how A evolves for two particular schedules

thread 1

thread 2

thread 3

thread 3

thread 2

thread 1

thread 0

Completely

different results!

21

Barrier synchronisation

barrier()

When a thread reaches barrier() it waits until all threads

reach the barrier

When all threads have reached the barrier, the threads

can proceed past the barrier

Reads and writes before the barrier are guaranteed to

have completed after the barrier

Used to synchronise threads

Note: all threads must reach the same barrier –

illegal for threads to reach different barriers

Related to, but different from memory barrier

in CPU instruction set

22

Using barrier to avoid a data race

__kernel void

add_neighbour(__local int* A, int offset) {

 int temp = A[tid + offset];

 barrier();

 A[tid] = A[tid] + temp;

}

Accesss cannot be

concurrent

23

Focussing data race analysis

...

barrier();

barrier();

...

Barrier-free

code region

Race may be due to two threads

executing statements within the

region

We cannot have a race caused

by a statement in the region and

a statement outside the region

All threads are always executing in a region between

two barriers:

Data race analysis can be localised to

focus on regions between barriers

24

Reducing thread schedules

barrier();

 S1;

 S2;

 ...

 Sk

barrier();

With n threads, roughly how many possible thread

schedules are there between these barriers, assuming

each statement is atomic?

Thread 2 executes k statements:
(𝑛 − 1) × 𝑘

𝑘
 choices for these

 etc.

Total execution length is 𝑛 × 𝑘

Thread 1 executes k statements:
𝑛 × 𝑘

𝑘
 choices for these

Number of possible schedules: in the order of 𝑛𝑘

25

Reducing thread schedules

Do we really need to consider all of these schedules to

detect data races?

No: actually is suffices to consider just one schedule, and

it can be any schedule

26

Any schedule will do! For example:

barrier(); // A

barrier(); // B

Run thread 0 from A to B

Log all accesses

Run thread 1 from A to B

Log all accesses

Check against thread 0

Run thread 2 from A to B

Log all accesses

Check against threads 0 and 1

Run thread N-1 from A to B

Log all accesses

Check against threads 0..N-2

. . .

Abort on race

If data race exists it will

be detected: abort

No data races: chosen

schedule equivalent to

all others

Completely avoids

reasoning about interleavings!

27

Reducing thread schedules

Because we can choose a single thread schedule, we

can view a barrier region containing k statements as a

sequential program containing n × k statements

This is good: it means we are back in the world of

sequential program analysis

But in practice it is quite normal for a GPU kernel to be

executed by e.g. 1024 threads

Leads to an intractably large sequential program

Can we do better?

28

Yes: just two threads will do!

barrier(); // A

barrier(); // B

Run thread i from A to B

Log all accesses

Run thread j from A to B

Check all accesses against thread i

Abort on race

Choose arbitrary i, j ∈ { 0, 1, …, N-1 } with i ≠ j

If data race exists it will be exposed for some choice

of i and j. If we can prove data race freedom for

arbitrary i and j then the region must be data race free

29

Is this sound?

barrier(); // A

barrier(); // B

barrier(); // C

Run thread i from A to B

Log all accesses

Run thread j from A to B

Check all accesses against thread i

Abort on race

Run thread i from B to C

Log all accesses

Run thread j from B to C

Check all accesses against thread i

Abort on race

No: it is as if only i

and j exist, and other

threads have no

effect!

Solution: make

shared state abstract
- simple idea: havoc

the shared state at

each barrier

- even simpler:

remove shared state

completely

havoc(x) means “set x

to an arbitrary value”

30

GPUVerify technique and tool

Exploit: any schedule will do

two threads will do

shared state abstraction

+

+

to compile massively parallel kernel K into sequential

program P such that (roughly):

(no assertion

failures)

P correct
K free from data races =>

Next: technical details of how this works

31

Demo of GPUVerify

Also try it yourself:

http://multicore.doc.ic.ac.uk/tools/GPUVerify

32

Data race analysis for straight line kernels

Assume kernel has form:

__kernel void foo(<parameters, including __local arrays>) {

 <local variable declarations>

 S1;

 S2;

 ...

 Sk;

}

where each statement Si has one of the following forms:

x = e

x = A[e]

A[e] = x

barrier()

where:
- x denotes a local variable

- e denotes an expression over local variables
- A denotes a __local array parameter

33

Data race analysis for straight line kernels

Restricting statements to these forms:

x = e

x = A[e]

A[e] = x

 barrier()

where:
- x denotes a local variable

- e denotes an expression over local variables

and tid
- A denotes a __local array parameter

means:

- A statement involves at most one load from /

stores to local memory

- There is no conditional or loop code

Easy to enforce by pre-

processing the code

We will drop this

restriction later

34

Our aim

We want to translate kernel into sequential program that:

- Models execution of two arbitrary threads using

some fixed schedule

- Detects data races

- Treats shared state abstractly

Call original GPU kernel K

Call resulting sequential program P

35

Introducing two arbitrary threads

K has implicit variable tid which gives the id of a thread

Suppose N is the total number of threads

In P, introduce two global variables:

int tid$1;

int tid$2;

and preconditions:

\requires 0 <= tid$1 && tid$1 < N;

\requires 0 <= tid$2 && tid$2 < N;

\requires tid$1 != tid$2;

Threads must both

be in range

Threads must be

different

…but otherwise the threads are arbitrary

36

Race checking instrumentation

For each __local array parameter A in K introduce four

global variables:

bool READ_HAS_OCCURRED_A;

bool WRITE_HAS_OCCURRED_A;

int READ_OFFSET_A;

int WRITE_OFFSET_A;

and four procedures:

void LOG_READ_A(int offset);

void LOG_WRITE_A(int offset);

void CHECK_READ_A(int offset);

void CHECK_WRITE_A(int offset);

We shall shortly

discuss the

implementation of

these

Get rid of parameter A in P

We shall shortly

discuss the

purpose of these

37

Example illustrating concepts so far:

__kernel void foo(__local int* A, __local int* B,

 int idx) {

 ...

}

int tid$1;

int tid$2;

bool READ_HAS_OCCURRED_A; bool READ_HAS_OCCURRED_B;

bool WRITE_HAS_OCCURRED_A; bool WRITE_HAS_OCCURRED_B;

int READ_OFFSET_A; int READ_OFFSET_B;

int WRITE_OFFSET_A; int WRITE_OFFSET_B;

// \requires 0 <= tid$1 && tid$1 < N;

// \requires 0 <= tid$2 && tid$2 < N;

// \requires tid$1 != tid$2;

void foo(int idx) {

 ...

}

Form of K

Form of P
Instrumentation

variables for A

Instrumentation

variables for B

A and B

have gone

Constraining tid$1 and

tid$2 to be arbitrary,

distinct threads

Ids for

two

threads

38

Duplicating local variable declarations

Local variable declaration:

int x
int x$1;

int x$2; duplicated to become:

Reflects fact that each thread has a copy of x

Notation: for an expression e over local variables and tid we

use e$1 to denote e with every occurrence of a variable x

replaced with x$1

e$2 is similar

E.g., if e is a + tid - x e$2 is

Non-array parameter declaration duplicated similarly.

Non-array parameter x initially assumed to be equal

between threads: \requires x$1 == x$2

a$2 + tid$2 - x$2

39

Translating statements of K

x = e; x$1 = e$1;

x$2 = e$2;

Log location from which

first thread reads

Check read by second

thread does not conflict with

any prior write by first thread

Over-approximate effect of

read by making receiving

variables arbitrary

Stmt translate(Stmt)

x = A[e]; LOG_READ_A(e$1);

CHECK_READ_A(e$2);

havoc(x$1);

havoc(x$2);

Encode the statements of K for both threads using round-

robin schedule for the two threads being modelled

We have removed array A. Thus we over-approximate

the effect of reading from A using havoc. We make no

assumptions about what A contains

40

Translating statements of K (continued)

A[e] = x; LOG_WRITE_A(e$1);

CHECK_WRITE_A(e$2);

// nothing

Log location to which

first thread writes

Check write by second

thread does not conflict

with any prior read or

write by first thread

The write itself has no

effect in because the

array A has been

removed

Stmt translate(Stmt)

barrier(); barrier();

We shall give barrier() a special

meaning in translated program

S;

T;

translate(S);

translate(T);

41

Example so far:

__kernel void

foo(__local int* A,

 int idx) {

 int x;

 int y;

 x = A[tid + idx];

 y = A[tid];

 A[tid] = x + y;

}

// \requires 0 <= tid$1 && tid$1 < N;

// \requires 0 <= tid$2 && tid$2 < N;

// \requires tid$1 != tid$2;

// \requires idx$1 == idx$2;

void foo(

) {

 int x$1; int x$2;

 int y$1; int y$2;

 LOG_READ_A(tid$1 + idx$1);

 CHECK_READ_A(tid$2 + idx$2);

 havoc(x$1); havoc(x$2);

 LOG_READ_A(tid$1);

 CHECK_READ_A(tid$2);

 havoc(y$1); havoc(y$2);

 LOG_WRITE_A(tid$1);

 CHECK_WRITE_A(tid$2);

}

int idx$1; int idx$2

