
Formal Analysis Techniques
for GPU kernels

Nathan Chong (nyc04@imperial.ac.uk)
Leap Conference, 22 May 2013

1

mailto:nyc04@imperial.ac.uk
mailto:nyc04@imperial.ac.uk

Reports and Articles

Social Processes and Proofs of Theorems
and Programs
Richard A. De Millo
Georgia Institute of Technology

Richard J. Lipton and Alan J. Perlis
Yale University

It is argued that formal verifications of programs,
no matter how obtained, will not play the same key role
in the development of computer science and software
engineering as proofs do in mathematics. Furthermore
the absence of continuity, the inevitability of change,
and the complexity of specification of significantly
many real programs make the formal verification
process difficult to justify and manage. It is felt that
ease of formal verification should not dominate
program language design.

Key Words and Phrases: formal mathematics,
mathematical proofs, program verification, program
specification

CR Categories: 2.10, 4.6, 5.24

I should like to ask the same question that Descartes asked. You
are proposing to give a precise definition of logical correctness
which is to be the same as my vague intuitive feeling for logical
correctness. How do you intend to show that they are the same?
... The average mathematician should not forget that intuition is
the final authority.

J. Barkley Rosser

Many people have argued that computer program-
ming should strive to become more like mathematics.
Maybe so, but not in the way they seem to think. The
aim of program verification, an attempt to make pro-
gramming more mathematics-like, is to increase dramat-
ically one's confidence in the correct functioning of a
piece of software, and the device that verifiers use to
achieve this goal is a long chain of formal, deductive
logic. In mathematics, the aim is to increase one's con-
fidence in the correctness of a theorem, and it's true that

“It is argued that formal verifications of
programs, no matter how obtained, will not
play the same key role in the development
of computer science and software
engineering as proofs do in mathematics”

2

Verification as a
powerful and practical
complement to Testing

3

“It was a real bug, and it caused real
issues in the results. It took significant
debugging time to find the problem.”

Lars Nyland (Senior Architect, NVIDIA)

4

Schedule

5

• Data races and Barrier Divergence

• Examples, Examples, Examples

• Anatomy of GPUVerify

• Further Examples

• Close and Questions

Data Races and
Barrier Divergence

6

gpu

global
memory

local memory host
cpu

7

global
memory

local memory

8

global
memory

local memory

9

global
memory

local memory

X
intra-
group
race

10

global
memory

local memory

X
inter-
group
race

11

__kernel void
add_nbor(__local int *A, int offset) {

 int tid = get_local_id(0);

 A[tid] += A[tid+offset];

}

12

s s+offset

__kernel void
add_nbor(__local int *A, int offset) {

 int tid = get_local_id(0);

 A[tid] += A[tid+offset];

}

13

s s+offset

__kernel void
add_nbor(__local int *A, int offset) {

 int tid = get_local_id(0);

 A[tid] += A[tid+offset];

}

14

t
t+offset

s s+offset

t

__kernel void
add_nbor(__local int *A, int offset) {

 int tid = get_local_id(0);

 A[tid] += A[tid+offset];

}

15

t
t+offset

s s+offset

t

X

__kernel void
add_nbor(__local int *A, int offset) {

 int tid = get_local_id(0);

 A[tid] += A[tid+offset];

}

16

__kernel void diverge() {

 int tid = get_local_id(0);

 if (tid == 0) barrier();
 else barrier();

}

17

18

If barrier is inside a conditional statement, then all
threads must enter the conditional if any thread
enters the conditional statement and executes the
barrier.

If barrier is inside a loop, all threads must execute
the barrier for each iteration of the loop before any
are allowed to continue execution beyond the
barrier.

OpenCL Specification
(6.12.8 Synchronization Functions)

Reduction Demo

19

0,2,4,6 1,3,5,7

SUM

0,4 1,5 2,6 3,7

0 1 2 3 4 5 6 7

Examples,
Examples,
Examples

20

Be Skeptical

21

• Is the verification easier or harder than
building a test harness?

• A common or rare type of bug?

• The impact of not catching this bug

• Limitations of technique

1 Races

22

t
t+offset

s s+offset

t

X

__kernel void
add_nbor(__local int *A, int offset) {

 int tid = get_local_id(0);

 A[tid] += A[tid+offset];

}

23

• Run GPUVerify on nbor.cl

• Can you fix the datarace?

• Does GPUVerify like your fix?

• Are there more problems with this kernel?

24

$ cd 1_simple_race
$ gpuverify --local_size=8 --num_groups=1 nbor.cl

Lessons

• GPUVerify can find possible data races,
giving a counterexample for you to evaluate

• By fixing bugs, you increase your
confidence in the verification result

• But still, the verification is limited. For
example, we don’t prove absence of array-
bounds or functional correctness

25

2 Benign Races

26

__kernel void
allsame(__local int *p, int val) {

 *p = val;

}

27

• Run GPUVerify on allsame.cl

• Try adding “--no-benign” to the command

• Change “val” to “get_local_id(0)”

• Have a look at the example in find.cl

28

$ cd 2_benign_race
$ gpuverify --local_size=8 --num_groups=1 allsame.cl

Lessons

• Benign data races do not lead to
nondeterminism

• Use --no-benign flag to warn about
benign data races

29

3 Barrier Divergence

30

__kernel void diverge() {

 int tid = get_local_id(0);

 if (tid == 0) barrier();
 else barrier();

}

31

__kernel void inloop() {

 int x = tid == 0 ? 4 : 1;
 int y = tid == 0 ? 1 : 4;

 int i = 0;
 while (i < x) {
 int j = 0;
 while (j < y) {
 barrier(); j++;
 }
 i++;
 }

}

32

• Run GPUVerify on these examples

• Is the inloop kernel barrier divergent?

• What does the inloop kernel try to do?

33

$ cd 3_barrier_divergence
$ gpuverify --local_size=8 --num_groups=1 diverge.cl
$ gpuverify --local_size=8 --num_groups=1 inloop.cl

34

If barrier is inside a conditional statement, then all
threads must enter the conditional if any thread
enters the conditional statement and executes the
barrier.

If barrier is inside a loop, all threads must execute
the barrier for each iteration of the loop before any
are allowed to continue execution beyond the
barrier.

OpenCL Specification
(6.12.8 Synchronization Functions)

35

GPU Final state of A

NVIDIA Tesla C2050 {{0,1,0,1},{1,0,1,0}}

AMD Tahiti {{0,1,2,3},{1,2,3,0}}

ARM Mali-T600 {{0,1,2,3},{3,0,1,2}}

Intel Xeon X5650 {{*,*,*,1},{3,0,1,2}}

Lessons

• Barrier divergence results in undefined
behaviour

• GPUVerify can detect such problems

• Arguably, this is a rare bug?

36

4 Asserts and Assumes

37

__kernel void simple(__local int *A) {

 A[tid] = tid;
 __assert(A[tid] == tid);
 __assert(A[tid] != get_local_size(0));
 __assert(__implies(
 __write(A),
 __write_offset(A)/sizeof(int) == tid));

}

38

• Run GPUVerify on these examples

• Try writing your own assertions

• Have a look at vacuous.cl

• Does this surprise you?

39

$ cd 4_asserts_and_assumes
$ gpuverify --local_size=8 --num_groups=1 assert.cl

Lessons

• Use asserts to state expected details of
your kernel at a particular program point

• The dangers of inconsistent assumptions

• Use __assert(false) to test for
inconsistency

40

5 Loops

41

__kernel void inc(int x) {

 int i = 0;
 while (i < x) {
 i = i + 1;
 }
 __assert(i == x);

}

42

__kernel void inc(int x) {
 __requires (0 < x);

 int i = 0;
 while (i < x) {
 i = i + 1;
 }
 __assert(i == x);

}

43

__kernel void inc(int x) {
 __requires (0 < x);

 int i = 0;
 while (__invariant(?), i < x) {
 i = i + 1;
 }
 __assert(i == x);

}

44

• Run GPUVerify on these examples

• Try running with the “--findbugs” flag

• Can you find an invariant for the loop?

• Take a look at stride.cl

45

$ cd 5_loops
$ gpuverify --local_size=8 --num_groups=1 inc.cl

Lessons

• Loop invariants are assertions that are true
at every loop iteration

• GPUVerify attempts to guess invariants

• They may be necessary to strengthen
verification to avoid false-positives

• Use --findbugs to do loop unwinding

46

Anatomy of GPUVerify

47

2-thread reduction
s t

X

48

barrier() // b1

barrier() // b2

Arbitrary threads s and t

49

barrier() // b1

barrier() // b2

run s from b1 to b2
log all accesses

Arbitrary threads s and t

50

barrier() // b1

barrier() // b2

run s from b1 to b2
log all accesses

run t from b1 to b2
check all accesses against s
abort on race

Arbitrary threads s and t

51

2-thread reduction
gives

scalable verification

52

Translate parallel kernel K into
sequential program P such that
P correct implies K is race-free

53

54

OpenCL
kernel

CUDA
kernel

Kernel Transformation
Engine

sequential
Boogie

program

Z3 SMT Solver

candidate
loop

invariants

Frontend (built on
LLVM/CLANG)

Boogie Verification
Engine

55

OpenCL
kernel

CUDA
kernel

Frontend (built on
LLVM/CLANG)

Kernel Transformation
Engine

sequential
Boogie

program

Boogie Verification
EngineZ3 SMT Solver

candidate
loop

invariants

Widely used,
very robust

The only
magic is here

Further Examples

56

__kernel void dbl_indirect(__local int *A) {

 A[tid] = tid;
 barrier();
 A[A[(tid+1)%N]] = tid;

}

57

0 1 2 3 4 5 6 7

__kernel void dbl_indirect(__local int *A) {

 A[tid] = tid;
 barrier();
 A[A[(tid+1)%N]] = tid;

}

58

7 0 1 2 3 4 5 6

barrier() // b1

barrier() // b2

barrier() // b3

run s from b1 to b2
log all accesses

run t from b1 to b2
check all accesses against s

run s from b2 to b3
log all accesses

run t from b2 to b3
check all accesses against s

59

barrier() // b1

barrier() // b2

barrier() // b3

run s from b1 to b2
log all accesses

run t from b1 to b2
check all accesses against s

run s from b2 to b3
log all accesses

run t from b2 to b3
check all accesses against s

unsound

60

barrier() // b1

barrier() // b2

barrier() // b3

run s from b1 to b2
log all accesses

run t from b1 to b2
check all accesses against s

run s from b2 to b3
log all accesses

run t from b2 to b3
check all accesses against s

havoc shared state

61

Shared state
abstraction is necessary

for soundness

62

GPUVerify: sound and
scalable verification for

GPU kernels

GPUVerify: A Verifier for GPU Kernels ⇤

Adam Betts1 Nathan Chong1 Alastair F. Donaldson1 Shaz Qadeer2 Paul Thomson1

1Department of Computing, Imperial College London, UK 2Microsoft Research, Redmond, USA
{abetts,nyc04,afd,pt1110}@imperial.ac.uk qadeer@microsoft.com

Abstract
We present a technique for verifying race- and divergence-
freedom of GPU kernels that are written in mainstream ker-
nel programming languages such as OpenCL and CUDA.
Our approach is founded on a novel formal operational se-
mantics for GPU programming termed synchronous, delayed
visibility (SDV) semantics. The SDV semantics provides a
precise definition of barrier divergence in GPU kernels and
allows kernel verification to be reduced to analysis of a
sequential program, thereby completely avoiding the need
to reason about thread interleavings, and allowing existing
modular techniques for program verification to be leveraged.
We describe an efficient encoding for data race detection and
propose a method for automatically inferring loop invari-
ants required for verification. We have implemented these
techniques as a practical verification tool, GPUVerify, which
can be applied directly to OpenCL and CUDA source code.
We evaluate GPUVerify with respect to a set of 163 kernels
drawn from public and commercial sources. Our evaluation
demonstrates that GPUVerify is capable of efficient, auto-
matic verification of a large number of real-world kernels.

Categories and Subject Descriptors F3.1 [Logics and
Meanings of Programs]: Specifying, Verifying & Reason-

such as AMD and NVIDIA, have become widely available
to end-users. Accelerators offer tremendous compute power
at a low cost, and tasks such as media processing, medical
imaging and eye-tracking can be accelerated to beat CPU
performance by orders of magnitude.

GPUs present a serious challenge for software develop-
ers. A system may contain one or more of the plethora of
devices on the market, with many more products anticipated
in the immediate future. Applications must exhibit portable
correctness, operating correctly on any GPU accelerator.
Software bugs in media processing domains can have serious
financial implications, and GPUs are being used increasingly
in domains such as medical image processing [37] where
safety is critical. Thus there is an urgent need for verifica-
tion techniques to aid construction of correct GPU software.

This paper addresses the problem of static verification
of GPU kernels written in kernel programming languages
such as OpenCL [17], CUDA [30] and C++ AMP [28]. We
focus on two classes of bugs which make writing correct
GPU kernels harder than writing correct sequential code:
data races and barrier divergence.

In contrast to the well-understood notion of data races,
there does not appear to be a formal definition of barrier di-
vergence for GPU programming. Our work begins by giving

In OOPSLA’12
63

A B C D E F G H

1 0 1 1 0 0 1 0

0 1 1 2 3 3 3 4

A B C D E F G H

A C D G

data

flag

idx

compact

out

64

65

66

s

67

s

t

X

68

__kernel void iterall_edges(
 __local uint2 *edges,
 __local uint *edgecolour,
 __local float *node_val
) {

 __requires(?);

 for (uint c=0; c < MAX_COLOUR; c++) {
 if (c == edgecolour[tid]) {
 node_val[edges[tid].lo] = ...;
 node_val[edges[tid].hi] = ...;
 }
 barrier();
 }

}

69

70

• Write a precondition that satisfies the
colouring requirement

• Preconditions and assertions are a kind of
executable documentation

$ cd 6_further
$ gpuverify --local_size=8 --num_groups=1 graph.cl

71

0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 8 9 10 11 12 13 14 15

2 16 17 18 19 20 21 22 23

3 24 25 26 27 28 29 30 31

4 32 33 34 35 36 37 38 39

5 40 41 42 43 44 45 46 47

6 48 49 50 51 52 53 54 55

7 56 57 58 59 60 61 62 63

height = 8

width = 8

Row Major
Aij stored at
i + (width*j)(0,0) (0,1)

(1,0) (1,1)

• Check out transpose.cu

• Involves tricky loop invariants for reasoning
about data accesses of individual threads

• More invariants than lines of code!

72

$ cd 6_further
$ gpuverify --blockDim=[4,2] --gridDim=[2,2]
-DWIDTH=8 -DHEIGHT=8 -DTILE_DIM=4 -DBLOCK_ROWS=2
transpose.cu

Lessons

• Valuable to know the limitations of the
tools you use

• Discovering loop invariants can be time-
consuming (but rewarding!)

• It is possible to reason about complicated
kernels if the engineering investment is
worthwhile

73

Closing

74

Verification as a
powerful and practical
complement to Testing

75

Formal reasoning as a
valuable discipline

76

Search ‘GPUVerify’ on YouTube

77

78

http://multicore.doc.ic.ac.uk/tools/GPUVerify

http://multicore.doc.ic.ac.uk/tools/GPUVerify
http://multicore.doc.ic.ac.uk/tools/GPUVerify

Alastair DonaldsonAlastair Donaldson

Microsoft Research Shaz Qadeer

Frontend Adam Betts
Peter Collingbourne

Semantics heavy lifting Jeroen Ketema

PhD students
Paul Thomson
Nathan Chong
Dan Liew

UROP students
Egor Kyshtymov
Cassie Epps

Work supported by EU FP7 STREP project CARP
(project number 287767) and EPSRC PSL project
(EP/I006761/1).

