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It is argued that formal verifications of programs, 
no matter how obtained, will not play the same key role 
in the development of computer science and software 
engineering as proofs do in mathematics. Furthermore 
the absence of continuity, the inevitability of change, 
and the complexity of specification of significantly 
many real programs make the formal verification 
process difficult to justify and manage. It is felt that 
ease of formal verification should not dominate 
program language design. 
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I should like to ask the same question that Descartes asked. You 
are proposing to give a precise definition of logical correctness 
which is to be the same as my vague intuitive feeling for logical 
correctness. How do you intend to show that they are the same? 
... The average mathematician should not forget that intuition is 
the final authority. 

J. Barkley Rosser 

Many people have argued that computer program- 
ming should strive to become more like mathematics. 
Maybe so, but not in the way they seem to think. The 
aim of  program verification, an attempt to make pro- 
gramming more mathematics-like, is to increase dramat- 
ically one's confidence in the correct functioning of  a 
piece of software, and the device that verifiers use to 
achieve this goal is a long chain of formal, deductive 
logic. In mathematics, the aim is to increase one's con- 
fidence in the correctness of  a theorem, and it's true that 

“It is argued that formal verifications of 
programs, no matter how obtained, will not 
play the same key role in the development 
of computer science and software 
engineering as proofs do in mathematics”
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Verification as a 
powerful and practical 
complement to Testing
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“It was a real bug, and it caused real 
issues in the results. It took significant 
debugging time to find the problem.”

Lars Nyland (Senior Architect, NVIDIA)
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Schedule
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• Data races and Barrier Divergence

• Examples, Examples, Examples

• Anatomy of GPUVerify

• Further Examples

• Close and Questions



Data Races and 
Barrier Divergence
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__kernel void
add_nbor(__local int *A, int offset) {

  int tid = get_local_id(0);

  A[tid] += A[tid+offset];

}
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s s+offset

__kernel void
add_nbor(__local int *A, int offset) {

  int tid = get_local_id(0);

  A[tid] += A[tid+offset];

}
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s s+offset

__kernel void
add_nbor(__local int *A, int offset) {

  int tid = get_local_id(0);

  A[tid] += A[tid+offset];

}
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__kernel void
add_nbor(__local int *A, int offset) {

  int tid = get_local_id(0);

  A[tid] += A[tid+offset];

}
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__kernel void
add_nbor(__local int *A, int offset) {

  int tid = get_local_id(0);

  A[tid] += A[tid+offset];

}
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__kernel void diverge() {

  int tid = get_local_id(0);

  if (tid == 0) barrier();
  else barrier();

}
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If barrier is inside a conditional statement, then all 
threads must enter the conditional if any thread 
enters the conditional statement and executes the 
barrier.

If barrier is inside a loop, all threads must execute 
the barrier for each iteration of the loop before any 
are allowed to continue execution beyond the 
barrier.

OpenCL Specification 
(6.12.8 Synchronization Functions)



Reduction Demo
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Examples, 
Examples, 
Examples
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Be Skeptical
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• Is the verification easier or harder than 
building a test harness?

• A common or rare type of bug?

• The impact of not catching this bug

• Limitations of technique



1 Races
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__kernel void
add_nbor(__local int *A, int offset) {

  int tid = get_local_id(0);

  A[tid] += A[tid+offset];

}
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• Run GPUVerify on nbor.cl

• Can you fix the datarace? 

• Does GPUVerify like your fix?

• Are there more problems with this kernel?
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$ cd 1_simple_race
$ gpuverify --local_size=8 --num_groups=1 nbor.cl



Lessons

• GPUVerify can find possible data races, 
giving a counterexample for you to evaluate

• By fixing bugs, you increase your 
confidence in the verification result

• But still, the verification is limited. For 
example, we don’t prove absence of array-
bounds or functional correctness
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2 Benign Races
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__kernel void
allsame(__local int *p, int val) {

  *p = val;

}
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• Run GPUVerify on allsame.cl

• Try adding “--no-benign” to the command

• Change “val” to “get_local_id(0)”

• Have a look at the example in find.cl
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$ cd 2_benign_race
$ gpuverify --local_size=8 --num_groups=1 allsame.cl



Lessons

• Benign data races do not lead to 
nondeterminism

• Use --no-benign flag to warn about 
benign data races
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3 Barrier Divergence
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__kernel void diverge() {

  int tid = get_local_id(0);

  if (tid == 0) barrier();
  else barrier();

}
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__kernel void inloop() {

  int x = tid == 0 ? 4 : 1;
  int y = tid == 0 ? 1 : 4;

  int i = 0;
  while (i < x) {
    int j = 0;
    while (j < y) {
      barrier(); j++;
    }
    i++;
  }

}
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• Run GPUVerify on these examples

• Is the inloop kernel barrier divergent?

• What does the inloop kernel try to do?
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$ cd 3_barrier_divergence
$ gpuverify --local_size=8 --num_groups=1 diverge.cl
$ gpuverify --local_size=8 --num_groups=1 inloop.cl
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If barrier is inside a conditional statement, then all 
threads must enter the conditional if any thread 
enters the conditional statement and executes the 
barrier.

If barrier is inside a loop, all threads must execute 
the barrier for each iteration of the loop before any 
are allowed to continue execution beyond the 
barrier.

OpenCL Specification 
(6.12.8 Synchronization Functions)
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GPU Final state of A

NVIDIA Tesla C2050 {{0,1,0,1},{1,0,1,0}}

AMD Tahiti {{0,1,2,3},{1,2,3,0}}

ARM Mali-T600 {{0,1,2,3},{3,0,1,2}}

Intel Xeon X5650 {{*,*,*,1},{3,0,1,2}}



Lessons

• Barrier divergence results in undefined 
behaviour

• GPUVerify can detect such problems

• Arguably, this is a rare bug?

36



4 Asserts and Assumes
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__kernel void simple(__local int *A) {

  A[tid] = tid;
  __assert(A[tid] == tid);
  __assert(A[tid] != get_local_size(0));
  __assert(__implies(
    __write(A),
    __write_offset(A)/sizeof(int) == tid));

}
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• Run GPUVerify on these examples

• Try writing your own assertions

• Have a look at vacuous.cl

• Does this surprise you?
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$ cd 4_asserts_and_assumes
$ gpuverify --local_size=8 --num_groups=1 assert.cl



Lessons

• Use asserts to state expected details of 
your kernel at a particular program point

• The dangers of inconsistent assumptions

• Use __assert(false) to test for 
inconsistency
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5 Loops
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__kernel void inc(int x) {

  int i = 0;
  while (i < x) {
    i = i + 1;
  }
  __assert(i == x);

}
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__kernel void inc(int x) {
  __requires (0 < x);

  int i = 0;
  while (i < x) {
    i = i + 1;
  }
  __assert(i == x);

}
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__kernel void inc(int x) {
  __requires (0 < x);

  int i = 0;
  while (__invariant(?), i < x) {
    i = i + 1;
  }
  __assert(i == x);

}
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• Run GPUVerify on these examples

• Try running with the “--findbugs” flag

• Can you find an invariant for the loop?

• Take a look at stride.cl

45

$ cd 5_loops
$ gpuverify --local_size=8 --num_groups=1 inc.cl



Lessons

• Loop invariants are assertions that are true 
at every loop iteration

• GPUVerify attempts to guess invariants

• They may be necessary to strengthen 
verification to avoid false-positives

• Use --findbugs to do loop unwinding
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Anatomy of GPUVerify

47



2-thread reduction
s t

X
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barrier() // b1

barrier() // b2

Arbitrary threads s and t
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barrier() // b1

barrier() // b2

run s from b1 to b2
log all accesses

Arbitrary threads s and t
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barrier() // b1

barrier() // b2

run s from b1 to b2
log all accesses

run t from b1 to b2
check all accesses against s
abort on race

Arbitrary threads s and t
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2-thread reduction
gives

scalable verification
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Translate parallel kernel K into 
sequential program P such that 
P correct implies K is race-free
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OpenCL
kernel

CUDA
kernel

Kernel Transformation 
Engine

sequential
Boogie

program

Z3 SMT Solver 

candidate
loop

invariants

Frontend (built on 
LLVM/CLANG)

Boogie Verification 
Engine
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OpenCL
kernel

CUDA
kernel

Frontend (built on 
LLVM/CLANG)

Kernel Transformation 
Engine

sequential
Boogie

program

Boogie Verification 
EngineZ3 SMT Solver 

candidate
loop

invariants

Widely used,
very robust

The only
magic is here



Further Examples
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__kernel void dbl_indirect(__local int *A) {

  A[tid] = tid;
  barrier();
  A[A[(tid+1)%N]] = tid;

}
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__kernel void dbl_indirect(__local int *A) {

  A[tid] = tid;
  barrier();
  A[A[(tid+1)%N]] = tid;

}
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barrier() // b1

barrier() // b2

barrier() // b3

run s from b1 to b2
log all accesses

run t from b1 to b2
check all accesses against s

run s from b2 to b3
log all accesses

run t from b2 to b3
check all accesses against s
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barrier() // b1

barrier() // b2

barrier() // b3

run s from b1 to b2
log all accesses

run t from b1 to b2
check all accesses against s

run s from b2 to b3
log all accesses

run t from b2 to b3
check all accesses against s

unsound
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barrier() // b1

barrier() // b2

barrier() // b3

run s from b1 to b2
log all accesses

run t from b1 to b2
check all accesses against s

run s from b2 to b3
log all accesses

run t from b2 to b3
check all accesses against s

havoc shared state

61



Shared state 
abstraction is necessary 

for soundness
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GPUVerify: sound and 
scalable verification for 

GPU kernels

GPUVerify: A Verifier for GPU Kernels ⇤

Adam Betts1 Nathan Chong1 Alastair F. Donaldson1 Shaz Qadeer2 Paul Thomson1

1Department of Computing, Imperial College London, UK 2Microsoft Research, Redmond, USA
{abetts,nyc04,afd,pt1110}@imperial.ac.uk qadeer@microsoft.com

Abstract
We present a technique for verifying race- and divergence-
freedom of GPU kernels that are written in mainstream ker-
nel programming languages such as OpenCL and CUDA.
Our approach is founded on a novel formal operational se-
mantics for GPU programming termed synchronous, delayed
visibility (SDV) semantics. The SDV semantics provides a
precise definition of barrier divergence in GPU kernels and
allows kernel verification to be reduced to analysis of a
sequential program, thereby completely avoiding the need
to reason about thread interleavings, and allowing existing
modular techniques for program verification to be leveraged.
We describe an efficient encoding for data race detection and
propose a method for automatically inferring loop invari-
ants required for verification. We have implemented these
techniques as a practical verification tool, GPUVerify, which
can be applied directly to OpenCL and CUDA source code.
We evaluate GPUVerify with respect to a set of 163 kernels
drawn from public and commercial sources. Our evaluation
demonstrates that GPUVerify is capable of efficient, auto-
matic verification of a large number of real-world kernels.

Categories and Subject Descriptors F3.1 [Logics and
Meanings of Programs]: Specifying, Verifying & Reason-

such as AMD and NVIDIA, have become widely available
to end-users. Accelerators offer tremendous compute power
at a low cost, and tasks such as media processing, medical
imaging and eye-tracking can be accelerated to beat CPU
performance by orders of magnitude.

GPUs present a serious challenge for software develop-
ers. A system may contain one or more of the plethora of
devices on the market, with many more products anticipated
in the immediate future. Applications must exhibit portable
correctness, operating correctly on any GPU accelerator.
Software bugs in media processing domains can have serious
financial implications, and GPUs are being used increasingly
in domains such as medical image processing [37] where
safety is critical. Thus there is an urgent need for verifica-
tion techniques to aid construction of correct GPU software.

This paper addresses the problem of static verification
of GPU kernels written in kernel programming languages
such as OpenCL [17], CUDA [30] and C++ AMP [28]. We
focus on two classes of bugs which make writing correct
GPU kernels harder than writing correct sequential code:
data races and barrier divergence.

In contrast to the well-understood notion of data races,
there does not appear to be a formal definition of barrier di-
vergence for GPU programming. Our work begins by giving

In OOPSLA’12
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A B C D E F G H

1 0 1 1 0 0 1 0

0 1 1 2 3 3 3 4

A B C D E F G H

A C D G

data

flag

idx
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out
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__kernel void iterall_edges(
  __local uint2 *edges, 
  __local uint  *edgecolour, 
  __local float *node_val
) {

  __requires(?);

  for (uint c=0; c < MAX_COLOUR; c++) {
    if (c == edgecolour[tid]) {
      node_val[edges[tid].lo] = ...;
      node_val[edges[tid].hi] = ...;
    }
    barrier();
  }

}
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• Write a precondition that satisfies the 
colouring requirement

• Preconditions and assertions are a kind of 
executable documentation

$ cd 6_further
$ gpuverify --local_size=8 --num_groups=1 graph.cl
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0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 8 9 10 11 12 13 14 15

2 16 17 18 19 20 21 22 23

3 24 25 26 27 28 29 30 31

4 32 33 34 35 36 37 38 39

5 40 41 42 43 44 45 46 47

6 48 49 50 51 52 53 54 55

7 56 57 58 59 60 61 62 63

height = 8

width = 8

Row Major
Aij stored at 
i + (width*j)(0,0) (0,1)

(1,0) (1,1)



• Check out transpose.cu

• Involves tricky loop invariants for reasoning 
about data accesses of individual threads

• More invariants than lines of code!
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$ cd 6_further
$ gpuverify --blockDim=[4,2] --gridDim=[2,2] 
-DWIDTH=8 -DHEIGHT=8 -DTILE_DIM=4 -DBLOCK_ROWS=2 
transpose.cu



Lessons

• Valuable to know the limitations of the 
tools you use

• Discovering loop invariants can be time-
consuming (but rewarding!)

• It is possible to reason about complicated 
kernels if the engineering investment is 
worthwhile
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Closing
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Verification as a 
powerful and practical 
complement to Testing
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Formal reasoning as a 
valuable discipline
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Search ‘GPUVerify’ on YouTube
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http://multicore.doc.ic.ac.uk/tools/GPUVerify

http://multicore.doc.ic.ac.uk/tools/GPUVerify
http://multicore.doc.ic.ac.uk/tools/GPUVerify
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