
Warps and Atomics: Beyond Barrier Synchronization in
the Verification of GPU Kernels

Ethel Bardsley and Alastair F. Donaldson

Imperial College London
{emb2009,afd}@imperial.ac.uk

Abstract. We describe the design and implementation of methods to support
reasoning about data races in GPU kernels where constructs other than the stan-
dard barrier primitive are used for synchronization. At one extreme we consider
kernels that exploit implicit, coarse-grained synchronization between threads in
the same warp, a feature provided by many architectures. At the other extreme we
consider kernels that reduce or avoid barrier synchronization through the use of
atomic operations. We discuss design decisions associated with providing support
for warps and atomics in GPUVerify, a formal verification tool for OpenCL and
CUDA kernels. We evaluate the practical impact of these design decisions using
a large set of benchmarks, showing that warps can be supported in a scalable
manner, that a coarse abstraction suffices for efficient reasoning about most prac-
tical uses of atomic operations, and that a novel, refined abstraction captures an
important design pattern where atomic operations are used to compute unique
array indices. Our evaluation revealed two previously unknown bugs in publicly
available benchmark suites.

1 Introduction

The rise of the use of graphics processing units (GPUs) for general purpose programming
allows for high-throughput massively parallel problems to be accelerated on relatively
cheap commodity hardware. This throughput is achieved on GPUs by running thousands
of threads in parallel. GPUs are thus suited to a variety of parallel tasks ranging from
graphics and imaging to simulation, medical imaging, and computational finance.

The massively parallel nature of graphics cards gives rise to concurrency bugs, such as
data races and deadlocks. Data races lead to non-determinism, incorrect computation and
undefined behavior. There has been recent interest in the program analysis community
on methods for formal or semi-formal analysis of GPU kernels, leading to methods
for finding bugs in [14,5] or proving correctness properties of [13,3,8,12] GPU kernels,
principally focused on data races.

The main GPU programming models, OpenCL [10] and CUDA [16] organize threads
into multiple, independent work groups, and provide a barrier operation for synchroniz-
ing threads within the same work group. When a thread reaches a barrier it must wait
for every thread in its work group to arrive at the barrier. The barrier ensures that all
memory accesses issued before the barrier have completed on barrier exit. The threads
in the work group then continue execution beyond the barrier. From the perspective

of race analysis tools, barriers allow analysis to be restricted to separate barrier inter-
vals [14], and each barrier interval can be checked for data races with respect to a single
thread schedule [13,14,3,5]. However, the runtime overhead of barrier synchronization
is high [16, §5.4.3] and there are instances where ensuring race-freedom using barriers
is cumbersome or impossible without destroying parallelism. Two features of modern
GPU designs allow these problems to be reduced to some extent: warps, where implicit
synchronization is guaranteed due to lock-step execution of threads, and atomic read-
modify-write operations, which enable memory locations to be updated asynchronously
and lock-free synchronization to be implemented. Because concurrent atomic operations
on a memory location are not considered racy, atomics allow acceptable non-determinism
to arise from the order of thread interleavings within a barrier interval, thus it is no longer
sound to consider a single thread schedule during race analysis.

In this paper, we discuss design decisions associated with providing support for
warps and atomics in GPUVerify, an existing verification technique and tool for OpenCL
and CUDA kernels [3]. For warps we present a two-pass approach where intra- and
inter-warp analyses are performed separately, and a re-sync approach where intra-warp
synchronization at the instruction level is accounted for in a general analysis. In contrast
to a recent method for bug-finding in the presence of atomics which heuristically explores
thread interleavings [4], we employ abstraction to enable verification of data race-
freedom. For kernels that use atomics merely for asynchronous shared state updates
we show that a coarse abstraction, where shared memory reads yield arbitrary values,
suffices for analysis. This coarse abstraction yields false positives when atomics are used
to ensure non-interference between threads. We have identified an important use case
where threads atomically increment a counter to compute a successive series of unique
indices, and present a novel refined abstraction to efficiently capture this use case.

We evaluate the precision and performance of our methods using a set of 199 CUDA
and 190 OpenCL kernels. Warp-aware analysis allows verification of 7 kernels whose
race-freedom depends on inter-warp synchronization; GPUVerify previously reported
false positives for these examples. Atomics are used by 22 kernels, making verification
tools inapplicable to these examples prior to this work. We discovered two previously
unknown bugs in these kernels, in the ParBoil [18] and CUDA 5.0 SDK [16] suites, one
directly related to use of atomics, which we have reported to the developers concerned.
After fixing these bugs, we were able to verify 15 of the kernels that used atomics.

In summary, our main contributions are:

– Two methods for supporting warps when reasoning about races in GPU kernels;
– A coarse abstraction for accommodating atomic operations and a novel refined

abstraction to capture an important atomic-based synchronization pattern;
– An implementation of our methods in the open source GPUVerify tool, and an

experimental evaluation over a large set of publicly available kernels.

2 Background

We briefly review important aspects of the GPU kernel programming model (Section 2.1),
discuss warps and atomics in more detail (Section 2.2), and summarize the GPUVerify
verification method on which we build (Section 2.3).

kernel void add(local float *A)
{
A[tid] = A[tid] +

A[(tid + 1)%N];
}

(a) OpenCL kernel with data race

kernel void add(local float *A)
{ float temp = A[(tid + 1)%N];
barrier();
A[tid] = A[tid] + temp;

}

(b) Data race eliminated via barrier

Fig. 1: OpenCL kernels illustrating data races and the use of barriers

2.1 GPU kernel programming model

A conventional modern GPU (e.g. a design from NVIDIA or AMD) consists of many
processing elements (PEs) organized into compute units. Each PE is equipped with a
portion of private memory, each compute unit includes a portion of shared memory
accessible to the PEs of the compute unit, and there is a global memory available to all
PEs on the GPU. The OpenCL [10] and CUDA [16] programming models roughly mirror
this structure; we discuss the OpenCL case. On OpenCL, a kernel is executed in parallel
by a number of work groups, each of which runs on a compute unit. A work group
consists of a number of work items (often, and in this paper, referred to as threads), each
of which executes on a PE. Thread-private variables are stored in PE private memory,
and threads in a work group share data stored in the memory space of the compute unit.
Data in GPU global memory is shared among all threads executing a kernel.

Behavior of the kernel is specified by a single kernel function, a template describing
the behavior of each thread. A thread has access to a thread id which it can use to
behave in an individual manner. Threads in the same work group synchronize via the
barrier primitive. When a thread reaches a barrier the thread stalls until all threads in
its work group have reached the same barrier. The barrier enforces memory ordering,
guaranteeing that memory accesses issued before the barrier will have completed before
threads commence execution beyond the barrier. Barriers allow synchronization only
between threads in the same work group.

The GPU kernel programmer must carefully place barriers to avoid data races:

Definition 2.1 (Warp- and atomic-oblivious data race). An execution of a GPU kernel
has a data race if two distinct threads access a common memory location, at least one of
the accesses modifies the location, and no barrier synchronization between the threads
separates these accesses.

The behavior of a kernel with a data race is undefined according to the OpenCL
specification. In practice data races lead to non-determinism, and expose re-orderings of
loads and stores due to relaxed underlying memory models.

Figure 1a shows a simple OpenCL kernel1 that exhibits data races between adjacent
threads. There is a race, for example, between threads 0 and 1 because thread 0 reads

1 OpenCL supports multi-dimensional arrangements of work groups and threads. For ease of
presentation all our example kernels are one-dimensional, and we use tid and N to abbreviate
the OpenCL syntax for the id of a thread and the total number of threads, respectively.

from A[1] (via A[(tid + 1)% N]), thread 1 writes to A[1] (via A[tid]) and there
is no guarantee on the order in which these accesses will occur. Figure 1b shows how a
barrier can be used to eliminate this race: all threads must reach the barrier until any can
proceed past the barrier, thus the conflicting accesses allowed by the kernel of Figure 1a
cannot be simultaneous in the kernel of Figure 1b.

2.2 Warps and atomics
Warps and implicit synchronization GPU architectures from NVIDIA and AMD provide
a degree of implicit synchronization between threads. On NVIDIA hardware, threads are
divided into power-of-two-sized subgroups of at least size 32, known as warps [16, §4.1].
AMD designs provide a similar notion of a wavefront [1] of threads. We use the term
warp to denote this feature in general. Threads in the same warp execute in lock-step,
sharing a program counter. Threads in the warp cannot simultaneously execute distinct
instructions (predicated execution [16, §5.4.2] is used to handle non-uniform execution
of conditional code by a warp), thus the scope for data races and non-determinism within
a warp is reduced. This mode of execution is termed SIMT (Single Instruction, Multiple
Thread) by NVIDIA, and is analogous to SIMD (Single Instruction Multiple Data).

Warp-level synchronization guarantees can allow expensive barrier synchronizations
to be omitted. If the kernel of Figure 1a is executed by 32 threads on an NVIDIA GPU,
these threads will be scheduled as a single warp. Every thread will read from A[(tid +
1)%N] before any thread writes to A[tid], making a data race impossible. Intra-warp
races can only occur when two threads in a warp attempt to simultaneously update the
same location, for example via a statement such as A[0] = tid.

Exploitation of warps is recommended in the CUDA programming guide [16], and
efficient algorithms have been developed that depend on this feature: Sengupta et al
show the number of barrier synchronization operations required during a parallel scan
can be reduced from log2(N) to log32(N), where N is the number of threads, by first
scanning within warps, using implicit synchronization, and then aggregating across
warps [17]. The OpenCL programming model aims to be general purpose and thus does
not acknowledge the existence of warps, so relying on platform-specific warp behavior
leads to non-portable code. However, the new OpenCL 2.0 extension specification [9,
§9.17, p133] contains an optional extension for subgroups, which allow the behavior of
warps to be captured. Furthermore, since many OpenCL kernels are ported from CUDA
versions, a warp-sensitive analysis for OpenCL can aid in distinguishing between data
races preserved by the porting process, and data races introduced by porting due to
assumptions about warps which are not valid in OpenCL.

Atomic operations OpenCL and CUDA are equipped with a set of atomic read-modify-
write intrinsics. Concurrent atomic operations on the same memory location are not
considered racy, thus atomics allow a memory location to be updated asynchronously
by multiple threads in a manner that is considered race-free. Such updates can lead to
non-determinism due to the order in which threads are scheduled. The example kernel of
Figure 2a uses the OpenCL atomic inc intrinsic to implement a histogram: A is an
array of data values, and B is an array of buckets; on finding that value t is present in A,
a thread increments the bucket at offset t from B. Using an atomic operation ensures that
buckets are incremented consistently, and because increment operations are commutative,

kernel void histo(local int* A,
local int* B) {

int t = A[tid];
atomic_inc(&B[t]);

}

(a) Efficient histogram implementation using
an atomic operation

kernel void histo(local int* A,
local int* B) {

int t = A[tid];
for (int j = 0; j < N; j++) {
if (tid == j)
B[t]++;

barrier();
} }

(b) Without atomics, a race-free histogram is
not efficient

Fig. 2: An illustration of the advantages brought by atomic operations

the order in which threads interleave is not important. If atomic inc(&B[t]) in
Figure 2a was changed to a non-atomic increment, B[t]++, there could be data races on
buckets, leading to an insufficient number of increments at best, and memory corruption
at worst. It is not feasible to safely implement this kind of kernel without atomics; the
kernel of Figure 2b shows how barrier synchronization can be used to serialize bucket
updates, but this destroys parallelism by effectively serializing the kernel as a whole.
Atomics can also be used for communication between threads in distinct work groups,
to ensure race-freedom. In Section 4.2 we show how atomics can be used to compute
disjoint array indices across multiple work groups.

Data races in the presence of warps and atomics We refine Definition 2.1 to take account
of warps and atomics. If two threads are in the same warp then a warp synchronization
occurs between the threads on execution of every instruction. The new parts of the
definition are emphasized:

Definition 2.2 (Warp- and atomic-aware data race). An execution of a GPU kernel
has a data race if two distinct threads access a common memory location, at least one of
the accesses modifies the location, at least one of the accesses is non-atomic, and no
barrier or warp synchronization between the threads separates these accesses.

2.3 Race analysis using GPUVerify

The GPUVerify tool [3] takes as input an OpenCL or CUDA kernel, optionally annotated
with loop invariants and procedure specifications. GPUVerify uses the Clang/LLVM
framework to process the kernel, translating it into a sequential program expressed in
the Boogie verification language [11]. This transformation encodes race checks using
assertions such that if the sequential program can be proven correct2 (i.e. free from
assertion failures) then the kernel is guaranteed to be free from data races. The sequential
program is checked using the Boogie verifier [2].

GPUVerify scales to large thread counts by encoding in the sequential program the
execution of the kernel by an arbitrary distinct pair of threads [3]. This pair of threads

2 We use correct to mean partially correct; GPUVerify does not perform termination analysis.

are considered to execute in lock-step, so that they execute exactly the same sequence of
instructions. Uniform execution of conditionals and loops is enforced in the sequential
program via predicated execution [3]. This fixed schedule eliminates thread interleavings.
However, data race analysis with respect to arbitrary thread interleavings is possible by
maintaining read and write sets for shared arrays. Let (s, t) denote the pair of threads
under consideration, and associate with each array A a setRA of read offsets andWA

of written offsets. Execution of a write instruction where s and t write to A at offsets os
and ot, respectively, is modelled by adding os toWA and then checking that ot does not
belong toRA ∪WA. Read operations are handled similarly, with the check relaxed to
allow read sharing. At a barrier,RA andWA are set to be empty for every array A. This
transformation is valid in the context of race checking, as a correct kernel is deterministic
for a given input, and threads cannot communicate aside from barriers, between which
there is no guaranteed schedule. The effects of the other threads are thus abstracted.

Consider again the example of Figure 1a. GPUVerify reasons that this kernel is racy
by selecting an arbitrary pair of threads s and t, and introducing read and write sets,
RA andWA, for the array A, which are initially empty. The reads from A[tid] and
A[(tid + 1)%N] are first checked by adding s and (s+ 1)%N toRA and checking
that t and (t+1)%N do not belong toWA; this holds trivially becauseWA is empty. The
write to A[tid] is then checked by adding s toWA and checking that t /∈ RA ∪WA.
This logging and checking is encoded using a set of constraints, and races between
specific threads are detected by solving for s and t. In the case t = (s+ 1)%N , we have
t ∈ RA ∪WA, so a race is reported.

For the two-thread reduction used by GPUVerify to be sound it is necessary to
over-approximate the effects of additional threads. The simplest solution is to make no
assumptions about the behavior of additional threads, assuming that these threads may
update the shared state arbitrarily. This can be achieved in two ways [3]:

– Adversarial abstraction: shared arrays are removed altogether, and every read
from a shared array instead returns a non-deterministic value

– Equality abstraction: shared arrays are updated non-deterministically (havocked)
each time a barrier is reached

Adversarial abstraction is sufficient for checking race-freedom of many kernels and
avoids the need to reason about arrays. Equality abstraction (so called because both
threads have an equal but arbitrary view of the shared state) is more refined, and is
necessary when race-freedom of a kernel requires agreement between threads on the
contents of a shared memory location, such as a flag.

The soundness of the two-thread abstraction is argued in [3], and of race analysis via
a single schedule in [14,19].

3 Warp-Aware Race Analysis
We considered two approaches to supporting intra-warp synchronization during race
analysis, which we call the re-sync method and the two-pass method.

3.1 Re-sync method
In the re-sync method (so called because threads synchronize at barriers, and analogously
threads in the same warp re-synchronize after each instruction), intra- and inter-warp

races are checked simultaneously. Race analysis works as described in Section 2.3, but
after each uniform read and write instruction with associated array A, the setsRA and
WA are set to be empty if the threads under consideration belong to the same warp.

Consider the example of Figure 1a with 64 threads, i.e. N = 64, and suppose
that these threads are organized into two warps, each of size 32. No races will be
detected between threads s and t in the same warp, i.e. if s, t ∈ {0, . . . , 31} or s, t ∈
{32, . . . , 63}: the read set RA is cleared immediately before the write to A[tid] is
analyzed. On the other hand, races will be detected for the cases s = 31, t = 32 and
s = 63, t = 0; we explain the s = 31, t = 32 case. After the read operations we have
RA = {s, s + 1} = {31, 32}; because s and t are in different warps RA is not made
empty; the write is then analyzed by adding s, i.e. 31, toWA and checking whether t,
i.e. 32, belongs toRA. This is the case, so a data race is reported.

This is sufficient to maintain soundness in the uniform case, where the threads follow
the same path, as for some racy code A[o] = . . ., os will still be inWA when ot 6∈WA

is checked, and thus the assertion failure will still be reported. For the divergent case
(referred to by [14] as a “porting race”), this reset is predicated, such that, for threads
s, t, with enabled predicates ps, pt, the reset is predicated by ps ∧ pt. For example, in the
racy code if (tid < 16) {A[o] = 1} else {A[o] = 2}, if s follows the
then branch and t takes the else, the reset won’t occur until the threads re-converge, and
so the case os = ot will report assertion failure as per the regular GPUVerify method.

3.2 Two-pass method

The two-pass method involves two independent analyses that can run in parallel, one
checking exclusively for inter-warp data races, the other exclusively for intra-warp
data races. Inter-warp data race analysis proceeds according to the method outlined in
Section 2.3, except that the arbitrary threads s and t are constrained to reside in different
warps. For intra-warp race analysis, s and t are constrained to reside in the same warp,
and for each write instruction we check that the offsets os and ot being written to are
different; there is no need to maintain read and write sets or analyze read instructions.

With respect to the running example of Figure 1a, with 64 threads organized as
two warps of size 32, the intra-warp case of the two-pass method determines that the
write A[tid] leads to disjoint accesses for any distinct threads s, t, thus there are no
intra-warp races. The inter-warp case detects the races between threads 31 and 32 and
threads 0 and 63 in the manner described for the re-sync method, except that there is no
need to consider setting the read/write sets for A to be empty between instructions.

This is implemented as, when thread paths are uniform, altering the log mechanism
such that, for writes, WA := {os} instead of WA := WA ∪ {os}, and making it the
empty set otherwise. This maintains soundness, as the write set will contain the current
instruction’s offset for the unified case, and in the non-unified case the technique behaves
as without this modification.

It is clear that the re-sync and two-pass methods achieve the same goal. Our hy-
pothesis was that the two-pass method might lead to faster verification by decomposing
analysis into two simpler cases that can be checked in parallel. Our experiments in
Section 5 validate this hypothesis with respect to a 215 example kernels: the two-pass
method outperforms the re-sync method in many cases.

3.3 Inter-warp synchronization and shared state abstraction
Recall from Section 2.3 that the two-thread reduction used by GPUVerify depends on
an accompanying abstraction of the shared state. Adversarial abstraction provides no
guarantees about the contents of the shared state and thus combines directly with our
approaches to warp-based synchronization. Combining warp-level synchronization with
equality abstraction requires some care. With equality abstraction, shared arrays are
havocked at every barrier. Consider the following code snippet, which is incorrect when
executed by a single warp of at least three threads:

if(tid == 0) {
A[0] = 1; A[1] = 1; A[2] = 1;

}
// At this point, A = { 1, 1, 1, ... }
A[tid] = 0;
// Now A = { 0, 0, 0, ... }
if(tid == 0) {

// The assertion should thus fail
assert(A[0] == 1 || A[1] == 1 || A[2] == 1);

}

Suppose we analyze this example using the two-thread reduction with straightforward
equality abstraction. Consider the pair of threads 0, 1. After execution of the first
conditional there are no data races and the threads’ view of A is {1, 1, 1, 1, . . . }. The
assignment A[tid] = 0 by threads 0 and 1 leads to a state whereA = {0, 0, 1, 1, . . . }.
This is incomplete: it does not take into account the actions of additional threads. Hence
the pair 0, 1 erroneously conclude, at the assertion, that at least one of A[0], A[1] and
A[2] is equal to 1, namely A[2].

To rectify equality abstraction in the presence of warps it is necessary to perform
additional havocking: after a write instruction to array A, the array A must be havocked
to reflect the fact that other unmodelled threads in the warp have also modified A. With
respect to the above example this means that the threads’ view of A is arbitrary after
each instruction, leading (as desired) to states in which the assertion fails.

4 Race Analysis and Abstraction for Atomic Operations
As discussed in Section 2.2, atomic operations relax the definition of what constitutes
a data race, reflected in Definition 2.2. This allows designated memory locations to be
updated concurrently in manner that is considered non-racy. Such concurrent updates
are a valid source of non-determinism, violating the assumption on which race analysis
in GPUVerify and other methods rests: that a race-free kernel behaves deterministically.
As a result, it is not sound in general to restrict analysis to a single thread schedule in the
presence of atomic operations.

For a precise analysis geared towards bug-finding this is problematic: to accurately
find bugs arising from atomic manipulation it is necessary to resort to exploring thread
interleavings. This has been investigated in the context of the GKLEE bug-finding tool
for CUDA [4], where delay bounding [7] is used to limit schedule explosion.

We have observed that in practice most GPU kernels that use atomics do so for
simple purposes, such as updating shared data asynchronously or computing unique

array indices. We focus here on using abstraction to prove race-freedom for these sorts
of kernels, without resorting to exploration of thread interleavings.

4.1 Over-approximating atomics with adversarial abstraction

Suppose we wish to analyze a kernel that updates elements of an array A atomically.3

If we handle A using adversarial abstraction, so that every read from A yields a non-
deterministic result, then there is no need to explicitly consider thread interleavings
arising from non-determinism introduced by atomic updates toA: adversarial abstraction
encodes at least the non-determinism that could arise from such updates.

Under adversarial abstraction we can adapt the race analysis procedure described in
Section 2.3 as follows. For a shared array A, in addition to read and write setsRA and
WA we introduce an atomic set AA recording offsets from A that have been accessed
atomically. Suppose the threads under consideration are s and t, and that an instruction ι
causes s and t to access offsets os and ot of a shared array A, respectively. We log the
access made by s by adding os to RA,WA, or AA depending on whether ι is a read,
write or atomic operation. We then check the access made by t, reporting a data race if:

– ot ∈ WA ∪ AA in the case where ι is a non-atomic read
– ot ∈ RA ∪WA ∪ AA in the case where ι is a non-atomic write
– ot ∈ RA ∪WA in the case where ι is an atomic operation

This extension of our method is sufficient for analysis of kernels where the return
values of atomic operations do not influence whether or not data races occur. An example
is the histogram kernel of Figure 2a: array B is updated atomically, thus B must be
adversarially abstracted. However, because no data is subsequently read from B, this
coarse abstraction of B cannot lead to false positive data race reports. Our approach
thus allows for sound race analysis of this simple example. In Section 5 we report on
a data race we detected in one of the ParBoil benchmarks [18], where both atomic
and non-atomic operations are used to manipulate the same array without adequate
synchronization.

It is not sound in general to use equality abstraction for an array that is atomically
updated: atomics allow non-determinism between barriers, so multiple reads from an
atomically-manipulated memory may yield different results.

4.2 A refined abstraction for repetition-free atomic operations

The example of Figure 3 demonstrates how atomic operations can be used to compute
disjoint indices for array accesses. In the figure, in and out are distinct shared arrays
of length MAX, and c is a pointer to a shared counter, initialized to zero. The unspecified
compute procedure performs some computation on the i-th element of in, returning a
value. The atomic inc operation atomically increments the shared memory location
pointed to by its argument and returns the previous value of this location.

This design pattern is useful in parallel processing of data where the computation
time per data element may vary in an unpredictable manner. Such variance means that it

3 In practice atomics are often used to update single memory locations, such as counters; we can
regard these as single-element arrays.

private int i = atomic_inc(c);
while(i < MAX) {
out[i] = compute(in, i);
i = atomic_inc(&c);

}

Fig. 3: Using atomic increment to compute disjoint array indices.

is not possible to achieve high performance by statically allocating a fixed chunk of data
elements to each thread. A classic example of this is fractal image computation, where
time to convergence for a pixel varies dramatically across the image, and we have seen
the above design pattern used (in a more sophisticated form) for lock-free division of
work in optimized Mandelbrot fractal kernels that ship with the CUDA SDK.

The basic atomic support described in Section 4.1 would report a false positive data
race for the above example. This is due to adversarial abstraction of the counter, which
allows two distinct threads to see common values returned by atomic inc, leading to
write-write data races on A. The example is in fact race-free when executed by multiple
threads. This is because, although the sequence of values a thread obtains by calling
atomic inc is dependent on the thread schedule, the sequences of values obtained by
two distinct threads must be disjoint—the counter only ever increases and thus (assuming
the counter does not overflow) it will never contain the same value twice.

If we can identify that a location l is accessed exclusively via atomic inc opera-
tions then we can refine adversarial abstraction to take advantage of the “repetition-free”
nature of this operation. Suppose we have a set used(l) recording all the values that
have been read from l so far during the program. Initially used(l) is empty. We can
model an application of atomic inc to location l by returning a non-deterministically
chosen value that does not belong to used(l), and then adding this value to used(l) so
that it is not returned again in future. This refined abstraction thus knows nothing about
the location l except that its current value is different from any other value previously
returned by atomic inc. This additional knowledge is sufficient to capture the case
where atomic inc is used to derive a unique array index.

More generally, we can compute this refined abstraction for a location l if we can
determine that l is manipulated exclusively using a single, repetition-free function.

Definition 4.1 (Repetition-free function). Let S be a set and f : S → S a function,
with fk : S → S denoting f applied k times. We say that f is repetition-free if for every
x ∈ S and m,n ≥ 0 with m 6= n, fm(x) 6= fn(x). That is, f has no periodic points.

The atomic inc operation can be viewed as updating a location storing value
v to store f(v), where f is the repetition-free function defined by f(x) = x + 1. We
can consider the atomic add operation, which takes a location and a non-negative
integer argument n, similarly in the case where n is positive: applying atomic add
to a location holding value v updates the location to store fn(v), where f(x) = x+ 1.
The operations atomic dec and atomic sub can be treated analogously using the
repetition-free function g defined by g(x) = x− 1.

This abstraction is technically unsound because it does not take into account the
possibility of overflow, which may cause a location to yield the same value twice if an
operation such as increment is called an extremely large number of times. Our aim in
this work is to provide pragmatic support for reasoning about kernels that use atomics,
thus we use the abstraction without regard for overflow. If overflow is a concern then
soundness can be restored through the addition of overflow checks (with a corresponding
increase in verification burden).

4.3 Implementation issues for atomics
Supporting atomic operations using adversarial abstraction (Section 4.1) is straightfor-
ward: we adapted GPUVerify to determine statically those arrays that may be manipulated
atomically and force adversarial abstraction of these arrays. We used the existing encod-
ing of read and write sets, described in [3], to add sets recording atomic accesses, and
implemented atomic-aware race checks as described in Section 4.1.

To support the refined atomic abstraction of Section 4.2 we made GPUVerify aware
of the repetition-free atomic operations atomic inc and atomic dec, and imple-
mented an analysis that determines whether an array is only ever accessed using a single
repetition-free atomic operation; we say that such an array is repetition-free. A call
to atomic add or atomic sub with a positive numeric argument is regarded as
consisting of a series of increments or decrements respectively.

For each repetition-free array A we introduce in the Boogie program generated
by GPUVerify a map usedA : Int × Int → Bool. If usedA(x, v) holds, this indicates
that offset x of A has previously yielded the value v, and thus will not yield v when
accessed again using the repetition-free operation. When translating an atomic operation
on repetition-free array A in the context of threads s and t, suppose that the threads
access array offsets os and ot and store the operation results into private variables zs and
zt, respectively. We generate the following sequence of Boogie statements (presented
here using mathematical syntax) to model the atomic operation:

AA := AA ∪ {os}; Log the atomic access made by thread s
assert ot /∈ RA ∪WA; Ensure the atomic access made by thread t does not race
havoc zs, zt; The threads receive values that are arbitrary, except:
assume ¬usedA(os, zs); neither value has been used
assume ¬usedA(ot, zt); previously at this offset, and
assume zs 6= zt the threads receive different values
usedA(os, zs) := true; The values are now marked as used up
usedA(ot, zt) := true;

Thus, os and ot are guaranteed unique, and subsequent use of them to index into
some array will be correctly found race-free.

In Section 5 we evaluate the overhead in terms of verification time of using this
refined abstraction over regular adversarial abstraction.

5 Experimental Evaluation
To evaluate our implementation of warp and atomic support in the GPUVerify tool [3]
we considered the following benchmark suites:

– CUDA 5.0 SDK benchmarks (171 CUDA kernels)
– CUDA 2.0 SDK benchmarks (8 CUDA kernels do not appear in the 5.0 SDK)
– C++ AMP samples, translated into CUDA, from [3] (20 CUDA kernels)
– AMD APP SDK (78 OpenCL kernels)
– ParBoil benchmarks (25 OpenCL kernels)
– SHOC benchmarks (87 OpenCL kernels)

Of the 199 CUDA and 190 OpenCL kernels, 6 and 16 use atomic operations, re-
spectively. The benchmarks and our tool chain, with instructions on how to re-run our
experiments, are available online.4

Experiments were performed on a PC with a 3.4GHz Intel i7-2600 and 16GB RAM
running Ubuntu 13.04, using GPUVerify revision 988 (2013-11-25), and Z3 4.3.1. A
time limit of 900 seconds (15 minutes) per kernel was used for analysis.

Impact of warp-level synchronization We ran GPUVerify with warp-level synchroniza-
tion enabled (warp size 32) across the 199 CUDA kernels. We found 7 cases where
verification succeeded with warp-level synchronization enabled but failed without. GPU-
Verify is thus able to provide precise results for these kernels where before it would
report false positives. We were surprised to find one case (dwtHaar1D) where verifica-
tion succeeded with the two-pass method but failed with re-sync. In this case re-sync
requires a loop invariant that makes reference to whether the threads under consideration
are in the same warp, which GPUVerify does not infer. With the two-pass method the
intra-warp case is trivial to verify, and a simpler loop invariant which is inferred suffices
for the inter-warp case.

Figure 4 compares verification times across the CUDA benchmarks with respect to
the re-sync and two-pass methods. A point at coordinates (x, y) represents a benchmark
for which analysis (successful verification, or the report of a failed proof attempt) took
x seconds using the re-sync method and y seconds using the two-pass method. The
figure shows that the two-pass method is faster in many cases, sometimes dramatically.
We attribute this to the fact that the two-pass method involves solving two simpler
verification problems which are solved in parallel. We also compared verification time
using the re-sync method to verification time without warp-level synchronization, for
the CUDA kernels where the verification result was not affected by warp-awareness.
We observed some fluctuation in verification times between examples, but overall the
performance difference was negligible: verification using the re-sync method was 1.043
times slower than with verification without support for warps. Thus warp-awareness
does not compromise verification speed.

Impact of support for atomic operations Prior to this work, GPUVerify (nor any other
verification tool for GPU kernels) was applicable to the 22 kernels in our suite that use
atomic operations. Using GPUVerify we found two bugs in these kernels.

In a CUDA 5.0 SDK Mandelbrot kernel, where atomic operations are used for work
distribution in a manner similar to the example of Figure 3, we found a read-write data
race arising due to a missing barrier. The race was not due to misuse of atomics, but
the kernel was not amenable to analysis prior atomic support. We reported this race to
engineers at NVIDIA who confirmed and subsequently fixed the issue.

4 http://multicore.doc.ic.ac.uk/tools/GPUVerify/NFM2014

101 102 103

Verification time (seconds): re-sync method

100

101

102

103

V
er

ifi
ca

tio
n

tim
e

(s
ec

on
ds

):
tw

o-
pa

ss
 m

et
ho

d

Fig. 4: Verification times for two-pass vs. re-sync methods over 199 CUDA kernels

We discovered an atomic/non-atomic race in a sophisticated histogram implementa-
tion kernel in the ParBoil suite (tpacf/gen hists). In this example, work groups
share histogram buckets in group-shared memory. Threads first initialize this memory
to zero, then repeatedly update histogram buckets atomically. No barrier was issued
between bucket initialization and bucket update, leading to races between these phases.
This race was confirmed by the maintainers of the Parboil suite.

These bugs cannot be found directly using GKLEE, a bug-finding tool for CUDA
kernels [14] that has been extended with support for atomics [4]. This is because the
kernels manipulate floating point data which GKLEE does not support. Floating point
operators are approximated by GPUVerify through the use of uninterpreted functions [3].

We also found what is strictly a read/atomic race in the histo/histo main
ParBoil example. A non-atomic read is used to retrieve the value of a histogram bucket
before an atomic update is applied. We do not regard this as a programmer error: we
believe the intention is that the read should be an atomic read operation, which OpenCL
1.2 does not directly provide. However, atomic read is provided by the recently announced
OpenCL 2.0, so the kernel should be re-written accordingly in due course.

After fixing these bugs, we were able to verify race-freedom for 15 of the 22
kernel that use atomics. In 13 cases verification was fully automatic: GPUVerify was
able to automatically generate loop invariants required to prove race-freedom. In 2
cases it was necessary to provide loop invariant annotations for verification to succeed.
These invariants were unrelated to the use of atomics – they were necessary to capture
disjointness of the data access patterns associated with non-atomic arrays. The invariants
are available in our online set of benchmarks.

Of the 7 kernels for which verification failed, 4 were kernels used in the implemen-
tation of breadth-first-search graph algorithms in the ParBoil and SHOC suites. These
kernels are only correct with respect to non-trivial, quantified preconditions on input

arrays, beyond the limited support for precondition annotations currently provided by
GPUVerify, thus the tool reports a write-atomic race for each of these kernels.

Two of the CUDA 5.0 Mandelbrot kernels use an atomic counter to compute disjoint
indices into shared arrays as discussed in Section 4.2. However, in each thread block
only the “master” thread, thread 0, is responsible for updating the global index counter,
obtaining a base index used by all threads in the block. In this setting the two-thread
reduction does not allow a proof of race-freedom for a pair of non-master threads s and
t in different thread blocks. Even with our refined atomic abstraction, in the absence of
concrete knowledge about master thread behavior, s and t cannot deduce that their base
indices are distinct. In future work we plan to solve this issue by extending the two-thread
reduction to allow specific threads, such as master threads, to be concretely represented.
To evaluate our refined atomic abstraction we created a simplified Mandelbrot fractal
generator, capturing all the behavior of the more complex of the two Mandelbrot exam-
ples, but simplified so that each thread directly computes its array indices from a global
counter, eliminating the role of a master thread. After this simplification, we were able
to verify the example using the refined abstraction of Section 4.2.

The final kernel using atomics that we could not verify is the histo/histo main
kernel discussed above: after we fixed the read/atomic race, GPUVerify reported possible
races on other, non-atomic arrays; we have yet to find strong enough loop invariants to
eliminate these false positives.

6 Related Work

Several recent works have focused on GPU kernel verification using SMT solving [13,3],
combined static and dynamic analysis [12] and separation logic with permissions [8].
The closest work to GPUVerify is the PUG technique and tool [13], and the methods
have been compared qualitatively and experimentally [3]. To our knowledge, ours is the
first work to present support for either warps or atomics in a verification technique.

Dynamic symbolic execution is used by the GKLEE [14] and KLEE-CL [5] tools
to find bugs in CUDA and OpenCL kernels, respectively. The GKLEE tool accurately
models warp-based execution and thus can find bugs in CUDA kernels precisely, without
reporting false positive data races that are impossible due to warp scheduling constraints.
An extension to the GKLEE tool considers analysis of CUDA kernels that use atomic
operations [4]. On discovering a potential conflict involving atomic accesses, thread
schedules are enumerated to try to find a concrete counterexample to correctness. Delay
bounding [7] is used to limit schedule explosion. This method has proven effective in
finding bugs, but cannot be used to verify absence of defects. As noted in Section 5,
application of GKLEE is limited due to lack of support for floating point operations. A
proposal for extending the KLEE-CL method with support for atomics, via a symbolic
encoding of schedules, is proposed as future work in [6], but has not been implemented.

The two-thread reduction employed by GPUVerify is also used in other methods for
GPU kernel analysis [13,15], and that several methods exploit the fact that race analysis
can be performed with respect to a single thread schedule [13,14,5].

7 Conclusions and Future Work
We have presented methods for extending a GPU kernel verification technique with
support for two additional inter-thread communication mechanisms: warps and atomics.
Our experimental evaluation shows that these extensions, implemented in the GPUVerify
tool, allow a larger set of kernels to be successfully analyzed.

Our main direction for future work will be the investigation of more sophisticated
abstractions for reasoning about atomic operations: extending the two-thread reduction
so that manipulation of atomic variables by master threads can be precisely handled,
as discussed in Section 5, and designing custom abstractions to capture further design
patterns associated with the use of atomics. We also plan to investigate the use of verifica-
tion methods for kernel optimization. For example, warp divergence [14], where threads
in the same warp simulate different control flow paths through predicated execution, is
often regarded as a performance bug. By combining support for reasoning about warps
with prior work on barrier divergence [3], we can investigate the use of verification to
prove absence of warp divergence in complex kernels.

References
1. AMD, Inc.: AMD graphics cores next (GCN) architecture, white paper (2012)
2. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular

reusable verifier for object-oriented programs. In: FMCO (2005)
3. Betts, A., Chong, N., Donaldson, A.F., Qadeer, S., Thomson, P.: GPUVerify: a verifier for

GPU kernels. In: OOPSLA (2012)
4. Chiang, W.F., Gopalakrishnan, G., Li, G., Rakamarić, Z.: Formal analysis of GPU programs

with atomics via conflict-directed delay-bounding. In: NFM (2013)
5. Collingbourne, P., Cadar, C., Kelly, P.H.: Symbolic testing of OpenCL code. In: HVC (2012)
6. Collingbourne, P.C.: Symbolic Crosschecking of Data-Parallel Floating Point Code. Ph.D.

thesis, Imperial College London (2012)
7. Emmi, M., Qadeer, S., Rakamaric, Z.: Delay-bounded scheduling. In: POPL (2011)
8. Huisman, M., Mihelčić, M.: Specification and verification of GPGPU programs using

permission-based separation logic. In: BYTECODE (2013)
9. Khronos Group: The OpenCL extension specification, version 2.0 (2013)

10. Khronos Group: The OpenCL specification, version 2.0 (2013)
11. Leino, K., Rustan, M.: This is Boogie 2 (2008), manuscript KRML 178 (2008)
12. Leung, A., Gupta, M., Agarwal, Y., Gupta, R., Jhala, R., Lerner, S.: Verifying GPU kernels by

test amplification. In: PLDI (2012)
13. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel functions. In:

FSE (2010)
14. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE: concolic

verification and test generation for GPUs. In: PPoPP. ACM (2012)
15. Li, P., Li, G., Gopalakrishnan, G.: Parametric flows: automated behavior equivalencing for

symbolic analysis of races in CUDA programs. In: SC (2012)
16. NVIDIA Corporation: CUDA C programming guide (2013), version 5.5
17. Sengupta, S., Harris, M., Garland, M.: Efficient parallel scan algorithms for GPUs. Tech. Rep.

NVR-2008-003, NVIDIA (2008)
18. Stratton, J.A. et al.: Parboil: A revised benchmark suite for scientific and commercial through-

put computing. Tech. Rep. IMPACT-12-01, UIUC (2012)
19. Collingbourne, P., Donaldson, A.F., Ketema, J., Qadeer, S.: Interleaving and lock-step seman-

tics for analysis and verification of GPU kernels. In: ESOP (2013)

