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Abstract
GPUVerify is a static analyis tool for verifying that GPU kernels
are free from data races and barrier divergence. It is intended as
an automatic tool, but its usability is impaired by the fact that the
user must explicitly supply the kernel source code, the number of
threads, and some kernel arguments. Extracting this information
from non-trivial OpenCL applications is laborious and error-prone.

We describe an extension to GPUVerify, called KernelIntercep-
tor, that automates the extraction of this information from a given
OpenCL application. After recompiling the application having in-
cluded an additional library and header file, KernelInterceptor is
able to detect each dynamic kernel launch and record the values
of the various parameters in a series of log files. GPUVerify can
then be invoked to examine these log files and verify each kernel
instance. We explain how the interception mechanism works, and
comment on the extent to which it improves the usability of GPU-
Verify.

1. Introduction
GPUVerify is a tool for verifying that GPU kernels, written in ei-
ther CUDA1 or OpenCL,2 are free from data races and barrier di-
vergence [2]. The analysis is done statically; that is, GPUVerify
does not actually run the kernel, but merely examines its source
code. GPUVerify is useful for discovering defects in kernels, but
can also go further than any testing tool can: it is able to certify
that a given kernel is free from these classes of defect under any
execution schedule. GPUVerify has already proved itself to be of
practical use when applied to non-trivial OpenCL and CUDA ker-
nels [2]. For instance, it is able to verify, without user intervention,
49 of the 70 kernels in the AMD Accelerated Parallel Processing
SDK (version 2.6).3

GPUVerify is intended as a completely-automatic tool, requir-
ing minimal expertise and minimal effort from its users. However,
assembling all of the necessary inputs to GPUVerify is a signifi-

1 http://www.nvidia.com/object/cuda_home_new.html
2 http://www.khronos.org/opencl/
3 developer.amd.com/sdks/amdappsdk/pages/default.aspx
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cant manual effort. The user must examine the source code of their
application, and supply to GPUVerify:

• the source code of each kernel,
• the precise number of threads and groups that will execute each

kernel,
• constraints on the values of selected kernel arguments (where

necessary for successful verification), and
• barrier invariants [3] and loop invariants (where necessary for

successful verification).

In this paper we describe an extension to GPUVerify, called Ker-
nelInterceptor, that automates the extraction of the first three items
above from a given OpenCL application. The fourth item, invari-
ant discovery, remains a challenging research topic, as discussed in
Section 4. Nevertheless, KernelInterceptor marks a significant step
toward fully automated verification of GPU kernels.

KernelInterceptor is used as follows.

1. The user prepares an application for interception. Small
modifications must be made to the source code and build pro-
cess of the OpenCL application to be analysed.

2. The user executes the application. As the application ex-
ecutes, KernelInterceptor intercepts each kernel launch and
records the kernel’s source code and the parameters passed.

3. The user executes GPUVerify. GPUVerify presents a list of
intercepted kernels. The user can then ask GPUVerify to try to
verify all or some of these kernels.

In the remainder of this paper, we describe how KernelInter-
ceptor is used (Section 2) and how it is implemented (Section 3).
Section 4 evaluates KernelInterceptor’s limitations and the extent
to which it improves the usability of GPUVerify, and also discusses
related and future work.

2. Usage
This section explains how KernelInterceptor works from the user’s
perspective. As a running example, we use an OpenCL application
that simulates collisions of rigid bodies [6]. This application is
part of the open source Bullet Physics library (version 3)4 and
the code is available online.5 The capabilities of the simulator are
demonstrated in Fig. 1.

4 http://bulletphysics.org
5 https://github.com/erwincoumans/bullet3
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The demo includes a benchmark mode that export a comma separated file (for Excel)  
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Figure 1. The Bullet rigid body simulator in action, simulating
hundreds of thousands of bodies and their collisions, all in real-
time. Picture credit: Erwin Coumans [6].

2.1 Instrumenting the source code
To use KernelInterceptor, the user must first download GPU-
Verify, which is shipped with the KernelInterceptor header file
(cl_interceptor.h) and library (cl_interceptor.cpp).

The line

#include "/path/to/cl_interceptor.h"

must be added to each .cpp file that includes the OpenCL headers
(cl.h or opencl.h). In the case of the Bullet simulator, the only
relevant file is b3OpenCLInclude.h.

The user must modify their build process so that it compiles
cl_interceptor.cpp and links it against their application. In the
case of the Bullet simulator, it suffices to add cl_interceptor.o
as a build target in the relevant makefiles.

The application can now be built and run as normal. The inter-
ception process records entire kernel texts and writes them to disk
on every kernel invocation, which incurs significant runtime over-
heads. We therefore recommend enabling KernelInterceptor only
as part of a debug build.

2.2 Inspecting the intercepted kernels
The user can view information about the intercepted kernels using
the command

gpuverify --show-intercepted.

After running KernelInterceptor on the Bullet simulator, this com-
mand produces the output shown in Fig. 2.

Each kernel instance is identified by a number, which is given
in brackets. For each instance, the command reports:

• the name of the kernel;
• the file that contains the kernel’s source code;
• the group size (local_size) and the total number of threads

(global_size);
• the values of the kernel’s scalar arguments (see remark below);
• the position in the application’s source code where this kernel

was compiled; and
• the position in the application’s source code where this kernel

was invoked.

[0] Name: AddOffsetKernel
File: .gpuverify/AddOffsetKernel001.cl
local_size=128,1 global_size=12544,1
args=0x7f4b000000800000006300006271
Built at b3OpenCLUtils.cpp:880
Run at b3LauncherCL.h:117

[1] Name: AddOffsetKernel
File: .gpuverify/AddOffsetKernel002.cl
local_size=128,1 global_size=12544,1
args=0x7f4b000000800000006300006271
Built at b3OpenCLUtils.cpp:880
Run at b3LauncherCL.h:117

[2] Name: AddOffsetKernel
File: .gpuverify/AddOffsetKernel003.cl
local_size=128,1 global_size=896,1
args=0x7f4b000000080000000800000780
Built at b3OpenCLUtils.cpp:880
Run at b3LauncherCL.h:117

...

Figure 2. Abridged output obtained from the command
gpuverify --show-intercepted

GPUVerify kernel analyser checked 37 kernels.
Successfully verified 35 kernels.
Failed to verify 2 kernels.

Successes:
[0] Verification of AddOffsetKernel

(.gpuverify/AddOffsetKernel001.cl) succeeded with:
local_size=128,1 global_size=12544,1 args=3

...
Failures:
[13] Verification of scatterKernel

(.gpuverify/scatterKernel003.cl) failed with:
local_size=12,1 global_size=256,1 args=14,8

[27] Verification of SubtractKernel
(.gpuverify/SubtractKernel020.cl) failed with:
local_size=12 global_size=24 args=7

Run ‘gpuverify --check-intercepted=<number>’ for
more details.

Figure 3. Abridged output obtained from the command
gpuverify --check-all-intercepted

We remark that KernelInterceptor does not record the value of
non-scalar arguments (i.e. array or pointer arguments), since they
tend not to affect the correctness of the kernel. Indeed, GPUVerify
ignores the values of such arguments as part of its abstraction.
Scalar values are stored in hexadecimal format because GPUVerify
deals only with untyped bitvectors.

Reporting where each kernel instance was compiled and where
it was invoked is valuable to users because tracing the origin of
a kernel obtained by KernelInterceptor can be tricky: the kernel’s
source code may not be simply read from a file, but pieced together
from multiple files and string constants at runtime, and possibly
configured based on user input.

2.3 Verifying the intercepted kernels
Having inspected the intercepted kernels, the user can now ask
GPUVerify to check their correctness.

The command

gpuverify --check-all-intercepted



1 // --local_size=128,1 --global_size=896,1 ê

--kernel-args=AddOffsetKernel,ê

0x00007f4b000000080000000800000780
2 // Built at ../../src/Bullet3OpenCL/ê

Initialize/b3OpenCLUtils.cpp:880
3 // Run at ../../src/Bullet3OpenCL/ê

ParallelPrimitives/b3LauncherCL.h:117
. . .

94 __kernel
95 void AddOffsetKernel(__global u32 *dst,ê

__global u32 *blockSum, uint4 cb)
96 {

. . .
106 }

Figure 4. Data logged in AddOffsetKernel003.cl for the third
instance of the AddOffsetKernel kernel

seeks to verify all of the kernel instances. In an effort to maintain
readability when there are many kernel instances, the output from
GPUVerify is abbreviated, so as to identify only those kernels that
failed to verify. These kernels can then be examined and re-verified
individually. An illustrative output is shown in Fig. 3.

The command

gpuverify --check-intercepted=2

instructs GPUVerify to try to verify the kernel instance identified as
number 2. In this case, GPUVerify outputs a message that it has ver-
ified the kernel, which implies that there are no data races and no in-
stances of barrier divergence. Had GPUVerify detected any of these
defects, it would have directed the user to the relevant line(s) in
the AddOffsetKernel003.cl file. The third possible result from
running GPUVerify is a timeout, which occurs when GPUVerify is
unable to prove or to disprove the kernel’s correctness.

3. Implementation
We now discuss some of the technical details of the implementation
of KernelInterceptor. We continue to use the Bullet simulator as a
running example.

3.1 Intercepting kernel launches
Relevant OpenCL host functions, such as clCreateBuffer,
clCreateProgramWithSource and clSetKernelArg, are inter-
cepted at the source level, such that, for example, clSetKernelArg
in the host code actually calls our clSetKernelArg_hook wrap-
per function. The wrapper functions log the relevant information
and then pass the parameters to the original functions, as normal.

3.2 Logging kernel parameters
Each time a kernel is invoked, KernelInterceptor creates a file,
whose name is formed from the name of the kernel, followed by
a unique identifier to avoid name clashes. These files are stored in
a .gpuverify directory, which KernelInterceptor creates in either
the application’s main directory, or in a directory specified by the
environment variable GPUV_KI_DIR. In the case of the Bullet sim-
ulator, when executed on several of the standard demonstrations,
and running the simulator for several seconds each time, over a
thousand such files were created, corresponding to the invocations
of 44 different kernels.

Let us now consider one of these files, AddOffsetKernel-
003.cl, which is created when KernelInterceptor intercepts the
third launch of the kernel called AddOffsetKernel. Its contents
is shown in Fig. 4. The file contains the kernel’s source code,

preceded by three commented lines. The first of these records the
group size and total number of threads, plus the hexadecimal value
of AddOffsetKernel’s sole scalar argument (which is named cb).
The second and third record the positions in the source code where
the kernel was compiled and invoked, respectively.

3.3 Passing kernel arguments to GPUVerify
We extended GPUVerify to accept a --kernel-args flag through
which a user can provide values for the arguments of a given kernel
function.

If K is the name of a kernel function, and K’s scalar arguments
are x1, . . . , xn, then

--kernel-args=K,v1,...,vn

instructs GPUVerify to assume the precondition

__requires(xi==vi)

for each 0 ă i ď n, when verifying the kernel K. The order of the
values provided to --kernel-args matches the order in which
K’s scalar arguments are declared.

An argument can be left unconstrained by inserting an asterisk.
For instance, if K accepts three scalar arguments, a, b and c, then
the flag

--kernel-args=binning_kernel,*,0x42,*

will insert the single precondition

__requires(b==0x42).

We remark that it is allowable to pass several --kernel-args
flags to GPUVerify, each providing arguments for a different kernel
function in the same file. By default, GPUVerify seeks to verify
all the kernel functions in a given .cl file, but we arrange that
when one or more --kernel-args flags are provided, GPUVerify
only checks the kernels that are named in those flags. This ensures
that GPUVerify seeks to verify only those kernels that are actually
invoked.

3.4 Caching verification results
When multiple kernel instances share the same source code, launch
parameters and kernel arguments, the results of attempting to verify
them will be the same. To avoid redundant calls to GPUVerify,
we arrange that the results of successful verification attempts are
written to a cache file, whose path is specified using the command-
line flag

--cache=<path>.

The cache file is consulted before each verification attempt, and
if there is a match, the cached result is displayed. Failed verifica-
tion attempts are not cached, since such attempts might become
successful when a more capable version of GPUVerify becomes
available.

4. Discussion
In this section, we evaluate the usability of our tool, discuss related
work, consider some limitations of our tool, and suggest some
future lines of enquiry.

4.1 Usability of KernelInterceptor
The GPUVerify team used KernelInterceptor to assist with the
verification of the Parboil benchmark suite [12]. This suite consists
of 12 programs and 25 unique kernels, some programmatically
generated.

KernelInterceptor accelerated the process of extracting kernel
source, compiler options, and valid local and global sizes. We ob-
serve that some kernels, such as those in the stencil benchmark,



are only race free when given certain arguments; this would have
been difficult to infer without the data provided by KernelIntercep-
tor.

Using KernelInterceptor required adding just a handful of lines
to the benchmark source and makefiles. It removed a significant
amount of labour in the preparation of a recent conference pa-
per [1].

4.2 Limitations
Discovery of invariants Although this work increases the degree
of automation in GPU kernel verification, we should point out
that completely automatic verification requires significant further
research, due to the problem of discovering invariants for verifying
barrier statements [3] and loop statements. Many kernels cannot be
verified without these invariants, and although much progress has
been made in using heuristics to infer these automatically, the task
of supplying them often falls back to the user.

Dependence on particular kernel parameters Note that because
the parameters are extracted from a particular execution of the
OpenCL application, we cannot claim every kernel to be ‘fully ver-
ified’: the kernel may not be correct when launched with different
parameters. What we can claim is that with these parameters, the
kernel is correct under any execution schedule.

4.3 Future directions
Generalising parameters As noted above, a successfully verified
kernel is only guaranteed to be defect-free when launched with
specific parameters. In future work, we plan to investigate how to
generalise these parameters, in order to strengthen the verification
result.

Consider SubtractKernel, one of the kernels from the Bullet
simulator. Starting from a successful verification with parameters

--local_size=64,1 --global_size=256,1 ê

--kernel-args=SubtractKernel,0x000065f4,0x00000100

one could greedily unconstrain values, by setting them to “*”, until
a minimal set of constraints is obtained. We find that the correctness
of this particular kernel does not depend on the kernel arguments,
so the constraints

--local_size=64,1 --global_size=256,1 ê

--kernel-args=SubtractKernel,*,*

are sufficient.
When there are many kernel instances to check, this parameter

generalisation technique may lead to fewer calls to GPUVerify
being required. For instance, all instances of SubtractKernel
with local_size=64,1 and global_size=256,1 can now be
considered verified, regardless of the other parameters, since the
stronger result has already been proven.

We also plan to investigate other ways to unconstrain kernel
parameters, such as ‘must be a power of 2’ or ‘must not exceed
1024’. Such constraints could reasonably be conjectured by a tool
such as Daikon [7], and then checked.

Run-time kernel interception We are considering implementing
an alternative mechanism that intercepts kernel launches at run-
time. This would be even less intrusive to the user than the current
mechanism, because no recompilation would be necessary. How-
ever, it would require additional work on our part to ensure com-
patibility with all platforms and drivers.

In the case of a Linux environment, we would make use of the
LD_PRELOAD environment variable, which identifies a directory of
libraries that should, at run-time, be linked before any other. By
pointing this variable to our library of wrappers for the relevant
OpenCL host functions, we can attain run-time interception.

Support for other kernel programming languages We plan to
extend our kernel interception technique to support kernels that
have been pre-compiled to the SPIR6 intermediate representation.
GPUVerify has direct support for the LLVM7 intermediate repre-
sentation [4], of which SPIR is a dialect, so this should prove quite
straightforward. We plan also to support kernels written in CUDA,
but we note that the run-time linking trick described above would
not work in a CUDA setting, where host programs are typically
linked statically.

Static analysis We plan to investigate the use of static analysis on
the host program as an alternative way to discover kernel parame-
ters. This would mean that the OpenCL application would not need
to be executed at all; our tool would simply examine the applica-
tion’s source code. An advantage of an approach based on static
analysis is that the correctness of the kernel can be guaranteed for
all possible executions of the application, rather than just a particu-
lar execution. A disadvantage, however, is that the kernel verifica-
tion is more likely to fail. It may, for instance, be understood that
the application is only to be provided with positive inputs, but un-
less this requirement is codified as an explicit precondition in the
source code, the static analysis will be ignorant of this and report
that the kernel is incorrect in general.

4.4 Related work
There has been significant interest recently in methods for analysing
and verifying GPU kernels.

Li and Gopalakrishnan’s PUG analyser shares the problem of
requiring the user to supply thread configurations and kernel argu-
ments manually [10]. Our technique for addressing this problem
only applies to OpenCL kernels, and hence is not directly applica-
ble to PUG, which analyses only CUDA kernels.

The GKLEE [11] and KLEE-CL [5] tools, which are based on
dynamic symbolic execution, do not have this problem because
they execute symbolically both host and device code. However,
although these tools seek to discover data races, they do not attempt
to verify their absence as GPUVerify does.

The technique of Leung et al. [9] is based on dynamic analysis
and thus already exploits information about thread configurations
and kernel arguments.

Huisman and Mihelčić have developed a technique to allow
functional verification of GPU kernels without the need to fix
thread counts [8]. We observe that many kernels require some con-
straints on thread counts (such as ‘must be a power of 2’ or ‘must
not exceed 1024’) in order to be correct. The KernelInterceptor con-
cept could therefore prove useful in this setting.
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