
81

Weakest-Precondition of Unstructured Programs

Mike Barnett and K. Rustan M. Leino
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
{mbarnett,leino}@microsoft.com

ABSTRACT
Program verification systems typically transform a program into a
logical expression which is then fed to a theorem prover. The log-
ical expression represents the weakest precondition of the program
relative to its specification; when (and if!) the theorem prover is
able to prove the expression, then the program is considered cor-
rect. Computing such a logical expression for an imperative, struc-
tured program is straightforward, although there are issues having
to do with loops and the efficiency both of the computation and of
the complexity of the formula with respect to the theorem prover.
This paper presents a novel approach for computing the weakest
precondition of an unstructured program that is sound even in the
presence of loops. The computation is efficient and the resulting
logical expression providesmore leeway for thetheorem prover ef-
ficiently to attack the proof.

0. INTRODUCTION
A techniquefor precisely checking that acomputer program meets

specified correctness criteria is static program verification. The
typical architectureof astatic program verifier takesas input apro-
gram and its specification, generates from these a verification con-
dition—afirst-order logical formulawhosevalidity impliesthat the
program meets the specification—and then passes the verification
condition to a theorem prover. The engineering of the verification
condition has a large impact on the proving task presented to the
theorem prover [11]. The primary goal is to prevent redundancy in
the verification condition, which lets the prover complete its task
more efficiently. Although the exact nature of what constitutes re-
dundancy may depend on the operation of the theorem prover, one
general desideratum is that the formula not be dramatically larger
than it needs to be.

In thispaper, wedescribetheverification condition generation in
theSpec# [2] static program verifier. It producesverification condi-
tionsthat aredecidedly smaller than thoseproduced by ESC/Java[11,
13], the leading automatic program checker of its kind. Moreover,
our verification condition generation is more general, because it
applies to general control-flow graphs, not just to structured pro-
grams. Another littlecontribution of thispaper is thedatastructure

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on serversor to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE ’05 Lisbon, Portugal
Copyright 2005 ACM 1-59593-239-9/05/0009 ...$5.00.

used when computing single-assignment incarnations, which can
reduce the number of incarnations produced.

Like the verification condition generation in ESC/Java [10, 14,
11], we proceed in stages. Our starting point is a general control-
flow graph. For us, this was a natural choice, because the Spec#
static program verifier uses as its input language the intermediate
language of the .NET virtual machine, whose branch instructions
can give rise to any control flow. Using standard compilation tech-
niques that duplicate instructions to eliminatemultipleentry points
to loops [0], we transform the general control-flow graph into a re-
ducible one. (In fact, being a superset of C#, Spec# inherits goto

statements that enableirreduciblecontrol flow already at thesource
level.) We then eliminate loops, producing an acyclic control-flow
graph that iscorrect only if the original program is correct. Weap-
ply a single-assignment transformation to the acyclic program and
then turn it into a passive program by changing assignment state-
ments intoassume statements. Finally, weapply weakest precon-
ditions to theunstructured, acyclic, passiveprogram to generate the
verification condition.

In thispaper, wedescribethestagesof thispipeline in reverseor-
der. But before we do, we present the unstructured language under
consideration and describe itsexecutions and correctness criteria.

1. PROGRAMS AND CORRECTNESS
Throughout thispaper, wethink of aprogramasachunk of code

that is to be verified. This may correspond to the implementation
of a method in the source program, for example.

The language we consider in thispaper follows thisgrammar:

Program ::= Block+

Block ::= BlockId : Stmt ; goto BlockId∗

Stmt ::= VarId := Expr | havoc VarId

| assert Expr | assume Expr

| Stmt ; Stmt | skip

A program consists of a number of basic blocks. Each basic block
has a label, a body, and a possibly empty set of successors. We
assume the program’s first block is labeled “Start” .

A program gives rise to a set of execution traces. An execution
trace consists of a sequence of program states, each a valuation of
the program variables. A trace is either infinite or it ends in termi-
nation, ends in error, or ends in infeasibility. Intuitively, each trace
of a program consists of the execution of successive blocks start-
ing from Start , at the end of each block arbitrarily choosing one
of the declared successor blocks, if any; the trace ends in termina-
tion if there are no successors to choose from, ends in error if an
assert statement evaluates to false, and ends in infeasibility if an
assume statement evaluates to false. In the next two paragraphs,
we make thisdefinition more precise.

82

82

A statement gives rise to a set of finite execution traces. The
assignment statement x := E gives rise to the set of terminating
traces σ τ , where state τ is like state σ except that it evaluates x

to σ(E). The details of expressions are not important here, but we
assume an expression always evaluates to somevalue in each state.
The statement havoc x sets x to an arbitrary value, thus giving
rise to the set of all terminating traces σ τ , where σ and τ agree
on their valuation of all variables except possibly x . Thestatement
assert E givesriseto theterminating (single-state) tracesσ where
σ(E), and to the erroneous traces σ where¬σ(E). The statement
assume E gives rise to the terminating tracesσ whereσ(E), and
to the infeasible traces σ where ¬σ(E). Sequential composition
S ;T givesriseto thenon-terminating tracesof S , and to thetermi-
nating traces of S continued (viaa matching intermediate state) by
the traces of T . Finally, skip is just a shorthand for assert true.

Theset of tracesof ablock A is thesmallest set of traces that in-
clude (a) the set of non-terminating tracesof thebody of A, (b) the
set of terminating traces of the body of A, if A has no successors,
and (c) the set of terminating traces of the body of A continued by
the traces of the successors of A, if A has successors. The set of
traces of a program is the set of traces of block Start .

A program iscorrect if none of its tracesends in error. Note that
this definition of correctness does not say anything about the final
state of terminating executions, but one can encode given postcon-
ditions by putting an appropriate assert statement at the end of
blocks with no successors. Note also that correct programs can
have traces that end in infeasibility; such can be thought of as the
execution making “mistakes” in the “arbitrary” choices inherent in
havoc and goto statements and in the “arbitrary” choice of the
initial state. Any given preconditions of the chunk of code to be
checked can be encoded by putting an appropriate assume state-
ment at the beginning of block Start . Finally, note that a correct
program can include neverending executions.

Our littlelanguagemay seem impoverished at first, but it suffices
for verification purposes (cf. [14]). In fact, it closely resembles
the statements in BoogiePL [5], the intermediate language used by
the Spec# static program verifier. For example, conditional control
flow, as in acommon if statement

if (E) { S } else { T }

can be encoded in our little language as:

Start : skip ; goto Then, Else

Then : assume E ; S ; goto End

Else : assume ¬E ; T ; goto End

End : . . .

Iteration is supported via the goto statements. A procedure call
is replaced by an encoding of the callee’s pre/post specification,
which can be done using assert, havoc, and assume [14]. Fi-
nally, exceptionsareencoded using acoupleof additional variables
(cf. [14]) and conditional control flow that threads through excep-
tion handlers.

We are now ready to describe the details of the verification con-
dition generation.

2. WEAKEST PRECONDITIONS
In this section, we define weakest preconditions of unstructured

programs. This is the last stage in our verification-condition gen-
eration pipeline. We assume programs to be passive (there are no
assignment statements). It isthiscomputation of weakest precondi-
tions that is at the heart of making the verification condition palat-
able to the theorem prover. In fact, our technique produces averifi-
cation condition that is linear in the size of the passive program.

For any statement S and predicate Q on the post-state of S , the
weakest precondition of S with respect to Q , written wp(S ,Q), is
a predicate that characterizes all pre-states of S from which no ex-
ecution will go wrong and from which every terminating execution
ends in a state satisfying Q [8]. The weakest preconditions of the
passive statements are defined as follows, for any Q :

wp(assert P , Q) = P ∧ Q

wp(assume P , Q) = P ⇒ Q

wp(S ;T , Q) = wp(S ,wp(T ,Q))

Note that wp is monotonic in itssecond argument.
In a structured program, the central problem to be overcome in

computing weakest preconditions is that of the choice statement,
S [] T , which arbitrarily chooses one of S and T to execute. Its
weakest precondition is defined by

wp(S [] T , Q) = wp(S ,Q) ∧ wp(T ,Q)

The problem is that the duplication of Q in the right-hand side of
this equation introduces redundancy. Q represents proof obliga-
tions downstream of the choice statement, and this naive formu-
lation suggests that the theorem prover would need to process Q

twice. In general, Q may need to be processed twice, but in prac-
tice, large parts of Q are often independent of which choice is
taken [11]. Luckily, passive programs satisfy a property that lets
this wp equation be formulated in a way that significantly reduces
redundancy [13]. The alternate form uses wp and so-called weak-
est liberal preconditions (wlp) and producesverification conditions
whosesizeisquadratic in thesizeof thepassiveprogram [11]. This
alternateform applies to structured programsonly, so applying it to
unstructured programs would require some preprocessing step.

Unstructured programs do not have the structured choice state-
ment. Instead, they have goto statements, which at first seem
even more disastrous—certainly, we would not like to explode the
control-flow graph into atree, which would loseall thesharing that
a control-flow graph representation affords (not to mention that we
don’t actually assume acyclicity in this section of the paper, even
though in our application the passive programs are all acyclic).

Here isour solution. For every block

A : S ; goto . . .

we introduce an auxiliary variable Aok . Intuitively, Aok is true if
the program is in a state from which all executions beginning from
block A are correct. Formally, we postulate the following block
equation:

Aok ≡ wp(S ,

�

B∈Succ(A)

Bok)

where Succ(A) denotes the set of successors of A so that the sec-
ond argument to wp is the conjunction of Bok for each block B in
that set. For example, the block equation for Then in the previous
section is:

Thenok ≡ (E ⇒ wp(S ,Endok))

Each block contributes one block equation, call their conjunction
R, and the program’s verification condition is:

R ⇒ Startok

The verification condition and block equations are in terms of
the program’s variables and the auxiliary variables. In the rest of
this section, it will be convenient to include the auxiliary variables
in states and traces. When we do so, we’ ll refer to the states as
augmented states.

83

83

LEMMA 0. For any program state σ, there is an augmented
state α that agrees with σ on the values of the program variables
and that satisfies all the program’s block equations.

PROOF. Theright-hand sideof each block equation isamonotonic
function of auxiliary variables (sincewp ismonotonic in itssecond
argument). Thus, the conjunction of block equations can be put
into the form K = F (K), whereK denotes the tuple of auxiliary
variablesand F (K) is thetupleof block-equation right-hand sides.
SinceF isamonotonic function on acomplete lattice, K = F (K)
has asolution in K (by Tarski’s Theorem [17]).

LEMMA 1. Let P be a passive program, A be a basic block in
P , and α an augmented state that satisfies all block equations of
P . If Aok is true in α, then every execution fromα starting in A is
either correct or has a correct prefix that returns to block A.

PROOF. By induction over the set of blocks not yet visited in
an execution prefix. If Bok holds at the beginning of the execution
from a block B , then the fact that α satisfies the block equation
for B means that the execution of B ’s body is correct and that,
for every successor C of B , Cok holds upon termination of the
body. For any successor block that is already visited in the execu-
tion trace, we are done. Morever, since the program is passive, all
block equationsstill hold, so theantecedent for applying the induc-
tion hypothesis on any successor Cok holds, and applying the in-
duction hypothesis leads to awell-founded induction because there
is one fewer blocks still to visit.

LEMMA 2. Let P be a passive program, A be a basic block in
P , and α an augmented state that satisfies all block equations of
P . If Aok is true in α, then every execution fromα starting in A is
correct.

PROOF. Takeany execution traceand chop it up into the longest
possible segments that do not repeat any blocks. Since this is a
passiveprogram, thefirst and last statesof any terminating segment
are the same. Then each of thesesegments iscorrect, by Lemma1,
which implies that the whole execution is correct.

THEOREM 3. For any passive program P , if the verification
condition for P is a valid formula, then P iscorrect.

PROOF. By Lemma0, wecan augment the initial statewith val-
ues for the auxiliary variables to form an augmented state α that
satisfies the conjunction of block equations. From the validity of
the verification condition, we then conclude that Startok holds in
α. By Lemma 2, every execution of the program is correct.

3. PASSIFICATION
We convert a loop-free program into a passive program by first

rewriting it in asingle-assigment form and then removing all of the
assignment statements.

3.0 Single Assignment
Dynamic single-assignment (DSA) [9] is similar to the standard

static single-assignment (SSA) [4] whereeven statically in thepro-
gram text there is at most one definition for each variable. In DSA
form, there may be more than one definition, but in any program
execution, at most one of them will be executed.

We convert the loop-free program into DSA form by noting that
after each updateto avariable, itsvaluemust beunderstood relative
to the newly updated state by identifying each updated value as
a new incarnation of the variable. For instance, we replace the
assignment statement:

x := x + 1

with the assignment statement:

xi+k := xi + 1

where xi+k is a fresh incarnation. In general, all variables read by
the statement are replaced by their current incarnations. After a
variable update (assignment or havoc statement), a fresh incarna-
tion becomes the new current incarnation for the updated variable.
At the beginning of the program, an initial incarnation is created
for each program variable. Wecall the last incarnation of avariable
in a block the block’s incarnation for that variable. The algorithm
for performing these replacements processes the graph in a topo-
logically sorted order.

For straight-linecode, it issimple to iterateover thesequence of
statements, replacing all of the variables with their current incar-
nations. But at join points (nodes in the control-flow graph with
more than one predecessor), a node may be “ inheriting” conflict-
ing current incarnations from its predecessors. For instance, in the
program in Section 1, let Start ’s incarnation for x be x0, Then ’s
incarnation be x1, and Else ’s incarnation be x2. Consider block
End : which incarnation should a reference to x (on the right-hand
sideof an assignment statement) betaken to be, x1 or x2? To model
the joining of the values, we introduce a fresh incarnation, x3, and
introducenew assignment statementsat theend of blocksB andC :
x3 := x1 and x3 := x2, respectively. We also update each block’s
incarnation (for x) to bex3. (This reflectsa choice; we could leave
their incarnations to be x1 and x2 respectively, but we next discuss
how either choice leads to the excessive creation of incarnations.)
Thishas the effect that during any particular execution, each incar-
nation is assigned to at most once. In the current example, either
block Then or block Else will execute and x3 will be equal to the
corresponding incarnation from that block.

This procedure for converting the program to DSA form means
that a new incarnation is potentially created for each variable at
every join point. However, thismay lead to theintroduction of more
incarnationsthan strictly necessary. Consider theprogram inFig. 0.
The algorithm sketched above would create a fresh incarnation at

A . . . := x ; goto B ,C ,D

B x := f (x) ; goto E

C . . . := x ; goto E ,F

D . . . := x ; goto F

E . . . := x ; goto

F . . . := x ; goto

Figure 0: A program that does not need a new incarnation at
every join point.

the join points E and F , resulting in the program in Fig. 1. But it
isclear that aminimal renaming would result in theDSA shown in
Fig. 2. We achieve this reduction by keeping a set of incarnations
as each block’s incarnation. All of the incarnations have the same
value, so when a join point is reached, any one of the incarnations
in itspredecessors’s incarnation set can be used.

3.1 Passive Programs
Once the program has been converted to DSA form, we replace

all assignment statements by assume statements. We replace the
assignment statement:

xi := E

with the statement:

assume xi = E

84

84

A . . . := x0 ; goto B ,C ,D

B x1 := f (x0) ; x2 := x1 ; goto E

C . . . := x0 ; x2 := x0 ; x3 := x2 ; goto E ,F

D . . . := x0 ; x3 := x0 ; goto F

E . . . := x2 ; goto

F . . . := x3 ; goto

Figure 1: The program from Fig. 0 in DSA form. Assuming
the processing order is: A, B , C , E , D , F , the incarnation
x2 replaces x0 as C ’s incarnation when processing E and the
incarnation x3 is then generated when processing F since D’s
incarnation is x0.

A . . . := x0 ; goto B ,C ,D

B x1 := f (x0) ; x2 := x1 ; goto E

C . . . := x0 ; x2 := x0 ; goto E ,F

D . . . := x0 ; goto F

E . . . := x2 ; goto

F . . . := x0 ; goto

Figure 2: The program from Fig. 0 with minimal renaming.
Note that there was no need to create the incarnation x3 when
processing F since C ’s incarnation is the set {x0, x2} instead of
having to choose either one of them.

We are able to replace the assignment with an assume statement
since the value of xi is not used prior to its definition—in effect,
we thus assume that xi had the desired value all along. Using an
assume statement in this way expresses what some language use
a let binding for: giving a name to aparticular value.

4. LOOPS
In this section, we describe the transformation from a reducible

control-flow graph into an acyclic control-flow graph. (We use
the standard techniques for converting an irreducible graph into an
equivalent, although possibly far larger, reducible graph. We are
looking into ways to deal with irreducible graphs that avoid this
problem, but so far it has not been an issue.) A reducible control-
flow graph isonewhere it ispossible to identify auniqueloop head
for each loop (throughout thissection, weusestandard terminology
from compilers [0]).

In order to identify the loops, webegin by finding all of theback
edges. It is the existence of a back edge that uniquely identifies
a loop. A back edge is an edge in the control-flow graph whose
tail (target of the edge) dominates its head (source of the edge).
One node dominates another node when all paths to the latter pass
through the former. The loop header for a back edge, B , is the
target of the edge. A loop header, L, may have more than one loop
associated with it: each natural loop isidentified by thepair (L,B).

We remove all back edges to cut the loops, thus transforming
the graph into an acyclic one. But in order for the loop body to
represent an arbitrary loop iteration, we must make sure that the
values of any variables modified within the loop have a value that
they might hold on any iteration of the loop.

For each natural loop (L, B), we collect into a set H (L,B) the
variables that areupdated by any statement in any block in theloop.
These variables are called loop targets. For each loop target v in
H (L,B), we introduce ahavoc statement and insert it at the be-
ginning of L, before any of the existing statements in that block.

Wiping out all knowledgeof thevalueavariablemight hold may
causethetheorem prover to beunable to prove theverification con-
dition. That is, it induces an over-approximation of the original
program and loses too much precision. To this end, we allow for
each loop to have an invariant: a condition that must be met on
each iteration of the loop. A loop invariant may be written by a
user or it may be one inferred by another component of the Spec#
static program verifier. (Inferring invariants is important to spare
the programmer from an undue annotation burden.)

Loop invariants are encoded as a prefix of assert statements at
the beginning of the loop header’s code block. These assert state-
ments cannot be validated if any of the variables they mention are
in H (L,B). Instead, weintroduceacopy of thissequenceof state-
ments into each predecessor node of L (including the node that is
the source of the back edge). Since the assertions are now checked
just before the jump to the loop header, we change the statements
into assume statements in L itself. We process loop invariants in
this way before adding thehavoc statements and cutting the back
edges. The resulting havoc followed by the assume statements
have the effect of retaining, about the loop targets, the information
in the loop invariant.

Weclaim that this transformation does not affect the correctness
of theprogram. It may however increasethesizeof thecodesinceit
introducesacopy of somecodeat thesourceof each edgeinstead of
having a single copy at its target. When a loop head’s predecessor
has additional edges to other nodes than the header, this adds an
assertion to control-flow paths that it had not been on previously.
However this is a conservative approximation: if the transformed
program executes correctly, then so would the original program.

Note that even after removing all back edges, thesource node of
the back edge is still reached from the loop header along forward
edges.

5. EXAMPLE
Weillustrateour technique with asimple example. Consider the

following Spec# source program:

int M (int x)
requires 100 <= x ; // precondition
ensures result == 0; // postcondition

{
while (0 < x)

invariant 0 <= x ; // loop invariant
{

x = x − 1;
}
return x ;

}

Thecontrol-flow graph corresponding to thismethod isencoded as
follows, wherewehaveused avariabler to denote theresult value:

Start : assume 100 ≤ x ; // precondition
goto LoopHead ;

LoopHead : assert 0 ≤ x ; // loop invariant
goto Body , After ;

Body : assume 0 < x ; // loop guard
x := x − 1 ;
goto LoopHead ;

After : assume ¬(0 < x) ; // negation of guard
r := x ; // return statement
assert r = 0 ; // postcondition
goto ;

85

85

After cutting back edges, the loop-free program is:

Start : assume 100 ≤ x ;
assert 0 ≤ x ; // check inv.
goto LoopHead ;

LoopHead : havoc x ; // havoc loop targets
assume 0 ≤ x ; // assume inv.
goto Body ,After ;

Body : assume 0 < x ;
x := x − 1 ;
assert 0 ≤ x ; // check inv.
goto ; // removed back edge

After : assume ¬(0 < x) ;
r := x ;
assert r = 0 ;
goto ;

The passive form of the program is then:

Start : assume 100 ≤ x0 ;
assert 0 ≤ x0 ;
goto LoopHead ;

LoopHead : skip ;
assume 0 ≤ x1 ;
goto Body , After ;

Body : assume 0 < x1 ;
assume x2 = x1 − 1 ;
assert 0 ≤ x2 ;
goto ;

After : assume ¬(0 < x1) ;
assume r1 = x1 ;
assert r1 = 0 ;
goto ;

After computing thewp, the set of block equations are then:

Startbe Startok ≡ 100 ≤ x0 ⇒
0 ≤ x0∧
LoopHeadok

LoopHeadbe LoopHeadok ≡ 0 ≤ x1 ⇒
Bodyok ∧ Afterok

Bodybe Bodyok ≡ 0 < x1 ⇒
x2 = x1 − 1 ⇒
0 ≤ x2 ∧ true

Afterbe Afterok ≡ ¬(0 < x1) ⇒
r1 = x1 ⇒
r1 = 0 ∧ true

where we use ⇒ as a right-associative operator whose binding
power liesbetween that of ≡ and∧. Finally, theverification condi-
tion is:

Startbe ∧ LoopHeadbe ∧ Bodybe ∧ Afterbe ⇒ Startok

6. RELATED WORK
The use of single-assignment form for program analysis has a

long history; thecanonical referenceisCytronet al. [4]. Feautrier [9]
introduced dynamic single-assignment, using it in the analysis of
nested-loop programs. Since then, it has been used extensively in
the context of nested-loop programs, e.g., [1, 15, 16].

The ESC/Javachecker [10] used DSA in itsgeneration of verifi-
cation conditions[11]. ESC/Javaalso convertsprograms to beloop
free in order to compute verification conditions, either by unrolling
the loop a certain number of times (which misses some execution
traces) or by a sound treatment [14].

We have not seen descriptions of single-assignment that map
variables to sets of incarnations, like we do to reduce the number
of incarnations needed.

Despitetheir significant advantages, many other verification tools,
including LOOP[18] and JACK [3], do not makeuseof redundancy-
reducing techniques when generating verification conditions, thus
producing voluminous verification conditions.

Weakest preconditions for unstructured programs have been de-
fined in a similar way before [12]. However, in that work, the de-
finitions were applied directly to programs that were neither pas-
sive nor loop-free, so the block equations used auxiliary functions
instead of auxiliary variables, and the program semantics (that is,
the antecedent of the verification condition, R) was defined to be
a fixpoint of these functions. The rewriting of these formulas into
formulas without quantifiers, functions, and fixpoints can give rise
to a doubly exponential increase in size.

7. CONCLUSIONS
We have presented a detailed account of our procedure for com-

puting a verification condition from a program (and its specifica-
tion) in order to use an automatic theorem prover for program ver-
ification. Our input does not need to be a structured program; we
deal efficiently with unstructured control-flow graphs. As aspecial
case, our technique can be applied to structured programs, which
will yield formulas with less redundancy than previously reported
(formulas linear in thesize of thepassive program compared to the
previous quadratic).

In the end, it is the time and space needed to generate verifica-
tion conditions and the resulting theorem prover performance that
matter. We had first implemented a transformation of the unstruc-
tured program into a structured one, from which we could then use
previous techniques. We found that the transformation, which is
exponential in the general case, caused our machines to run out
of memory for some methods in the programs we applied our tool
to. Good heuristics could probably have improved the situation,
but sinceour new technique can beapplied directly to unstructured
programs, weabandoned the transformation.

Thetheorem prover wecurrently use, Simplify [6], wasdeveloped
along with redundancy-reduction techniquesfor theESC/Modula-3
checker [7, 11], similar to those of the later ESC/Java checker. We
were uncertain that Simplify would perform well on our new ver-
ification conditions, since their flat structure does not provide any
guidance about a good order in which to do case splits and Sim-
plify performs case splits only as a last resort. So far, this has not
become a critical issue. Even so, we are in the process of switch-
ing to a theorem prover whose case splits are performed by a SAT
solver, and we are hopeful that our verification conditions will be
an especially good match for such a theorem prover.

Weare also investigating whether our use of sets of incarnations
achieves minimality, because there may be blocks considered even
later in the algorithm that force new incarnations to be created.

Acknowledgments
We’d like to thank the Spec# team for various discussions about
this design. Manuel Fähndrich contributed to the design of a pre-
viousscheme to generateverification conditions by first transform-
ing unstructured programs into structured ones and to the design
of where to place declared loop invariants in BoogiePL programs.
Bart Jacobs implemented loop invariants in Spec#, taking measures
to make sure these end up in the right place in the BoogiePL pro-
grams. Simon Ou coded up the block equations. We thank Dave
Naumann and the referees for their careful readings of this paper.

86

86

8. REFERENCES
[0] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.

Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1987.

[1] Zena M. Ariola, Barton C. Massey, M. Sami, and Evan Tick.
A common intermediate language and itsuse in partitioning
concurrent declarative programs. New Generation
Computing, 14(3):281–315, 1996.

[2] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte.
The Spec# programming system: An overview. In Gilles
Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet,
and Traian Muntean, editors, CASSIS2004, Construction
and Analysis of Safe, Secure and Interoperable Smart
devices, volume 3362 of LNCS, pages 49–69. Springer, 2005.

[3] L. Burdy, A. Requet, and J.-L. Lanet. Java applet
correctness: a developer-oriented approach. In Keijiro Araki,
Stefania Gnesi, and Dino Mandrioli, editors, FME 2003:
Formal Methods, International Symposium of Formal
Methods Europe, volume 2805 of LNCS, pages 422–439.
Springer, September 2003.

[4] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.
Wegman, and F. Kenneth Zadeck. Efficiently computing
static single assignment form and the control dependence
graph. ACM Transactions on Programming Languages and
Systems, 13(4):451–490, October 1991.

[5] Robert DeLine and K. Rustan M. Leino. BoogiePL: A typed
procedural language for checking object-oriented programs.
Technical Report 2005-70, Microsoft Research, May 2005.

[6] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A
theorem prover for program checking. Technical Report
HPL-2003-148, HPLabs, July 2003.

[7] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and
James B. Saxe. Extended static checking. Research Report
159, Compaq SystemsResearch Center, December 1998.

[8] Edsger W. Dijkstra. A Discipline of Programming. Prentice
Hall, Englewood Cliffs, NJ, 1976.

[9] Paul Feautrier. Dataflow analysis of array and scalar
references. International Journal of Parallel Programming,
20(1):23–53, 1991.

[10] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge,
Greg Nelson, James B. Saxe, and Raymie Stata. Extended
static checking for Java. In Proceedings of the 2002 ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), volume 37, number 5 in
SIGPLAN Notices, pages 234–245. ACM, May 2002.

[11] Cormac Flanagan and James B. Saxe. Avoiding exponential
explosion: Generating compact verification conditions. In
Conference Record of the 28th Annual ACM Symposium on
Principles of Programming Languages, pages 193–205.
ACM, January 2001.

[12] K. Rustan M. Leino. A SAT characterization of
boolean-program correctness. In Thomas Ball and Sriram K.
Rajamani, editors, Model Checking Software: SPIN 2003,
volume 2648 of LNCS, pages 104–120. Springer, May 2003.

[13] K. Rustan M. Leino. Efficient weakest preconditions.
Information Processing Letters, 93(6):281–288, March 2005.

[14] K. Rustan M. Leino, James B. Saxe, and Raymie Stata.
Checking Java programs via guarded commands. In Bart
Jacobs, Gary T. Leavens, Peter Müller, and Arnd
Poetzsch-Heffter, editors, Formal Techniques for Java
Programs, Technical Report 251. Fernuniversität Hagen,
May 1999. Also available as Technical Note 1999-002,

Compaq Systems Research Center.
[15] Carl Offner and Kathleen Knobe. Weak dynamic single

assignment form. Technical Report HPL-2003-169, HP
Laboratories, 2003.

[16] K. C. Shashidhar, Maurice Bruynooghe, Francky Catthoor,
and Gerda Janssens. Geometric model checking: An
automatic verification technique for loop and data reuse
transformations. Electronic Notes Theoretical Computer
Science, 65(2), 2002.

[17] Alfred Tarski. A lattice-theoretical fixpoint theorem and its
applications. Pacific Journal of Mathematics, 5:285–309,
1955.

[18] Joachim van den Berg and Bart Jacobs. The LOOPcompiler
for Java and JML. In Tiziana Margaria and Wang Yi, editors,
Tools and Algorithms for the Construction and Analysis of
Systems, 7th International Conference, TACAS2001, volume
2031 of LNCS, pages 299–312. Springer, April 2001.

87

