
Towards Optimization-Safe Systems:
Analyzing the Impact of Undefined Behavior

Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama
MIT CSAIL

Abstract
This paper studies an emerging class of software bugs
called optimization-unstable code: code that is unexpect-
edly discarded by compiler optimizations due to unde-
fined behavior in the program. Unstable code is present
in many systems, including the Linux kernel and the Post-
gres database. The consequences of unstable code range
from incorrect functionality to missing security checks.

To reason about unstable code, this paper proposes
a novel model, which views unstable code in terms of
optimizations that leverage undefined behavior. Using
this model, we introduce a new static checker called Stack
that precisely identifies unstable code. Applying Stack
to widely used systems has uncovered 160 new bugs that
have been confirmed and fixed by developers.

1 Introduction
The specifications of many programming languages des-
ignate certain code fragments as having undefined behav-
ior [15: §2.3], giving compilers the freedom to generate
instructions that behave in arbitrary ways in those cases.
For example, in C the “use of a nonportable or erroneous
program construct or of erroneous data” leads to unde-
fined behavior [24: §3.4.3].

One way in which compilers exploit undefined behavior
is to optimize a program under the assumption that the pro-
gram never invokes undefined behavior. A consequence
of such optimizations is especially surprising to many pro-
grammers: code which works with optimizations turned
off (e.g., -O0) breaks with a higher optimization level (e.g.,
-O2), because the compiler considers part of the code dead
and discards it. We call such code optimization-unstable
code, or just unstable code for short. If the discarded

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the owner/author.

Copyright is held by the owner/author(s).
SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.
ACM 978-1-4503-2388-8/13/11.
http://dx.doi.org/10.1145/2517349.2522728

char *buf = ...;
char *buf_end = ...;
unsigned int len = ...;
if (buf + len >= buf_end)

return; /* len too large */
if (buf + len < buf)

return; /* overflow, buf+len wrapped around */
/* write to buf[0..len-1] */

Figure 1: A pointer overflow check found in several code bases.
The code becomes vulnerable as gcc optimizes away the second if
statement [13].

unstable code happens to be used for security checks, the
optimized system will become vulnerable to attacks.

This paper presents the first systematic approach for
reasoning about and detecting unstable code. We imple-
ment this approach in a static checker called Stack, and
use it to show that unstable code is present in a wide
range of systems software, including the Linux kernel and
the Postgres database. We estimate that unstable code
exists in 40% of the 8,575 Debian Wheezy packages that
contain C/C++ code. We also show that compilers are
increasingly taking advantage of undefined behavior for
optimizations, leading to more vulnerabilities related to
unstable code.

To understand unstable code, consider the pointer over-
flow check buf+len < buf shown in Figure 1, where buf
is a pointer and len is a positive integer. The program-
mer’s intention is to catch the case when len is so large
that buf + len wraps around and bypasses the first check
in Figure 1. We have found similar checks in a number of
systems, including the Chromium browser [7], the Linux
kernel [49], and the Python interpreter [37].

While this check appears to work with a flat address
space, it fails on a segmented architecture [23: §6.3.2.3].
Therefore, the C standard states that an overflowed pointer
is undefined [24: §6.5.6/p8], which allows gcc to simply
assume that no pointer overflow ever occurs on any archi-
tecture. Under this assumption, buf + len must be larger
than buf, and thus the “overflow” check always evaluates
to false. Consequently, gcc removes the check, paving the
way for an attack to the system [13].

In addition to introducing new vulnerabilities, unstable
code can amplify existing weakness in the system. Fig-
ure 2 shows a mild defect in the Linux kernel, where the
programmer incorrectly placed the dereference tun->sk

260

http://dx.doi.org/10.1145/2517349.2522728

struct tun_struct *tun = ...;
struct sock *sk = tun->sk;
if (!tun)

return POLLERR;
/* write to address based on tun */

Figure 2: A null pointer dereference vulnerability (CVE-2009-
1897) in the Linux kernel, where the dereference of pointer tun is
before the null pointer check. The code becomes exploitable as gcc
optimizes away the null pointer check [10].

before the null pointer check !tun. Normally, the kernel
forbids access to page zero; a null tun pointing to page
zero causes a kernel oops at tun->sk and terminates the
current process. Even if page zero is made accessible (e.g.,
via mmap or some other exploits [25, 45]), the check !tun
would catch a null tun and prevent any further exploits. In
either case, an adversary should not be able to go beyond
the null pointer check.

Unfortunately, unstable code can turn this simple bug
into an exploitable vulnerability. For example, when gcc
first sees the dereference tun->sk, it concludes that the
pointer tun must be non-null, because the C standard
states that dereferencing a null pointer is undefined [24:
§6.5.3]. Since tun is non-null, gcc further determines that
the null pointer check is unnecessary and eliminates the
check, making a privilege escalation exploit possible that
would not otherwise be [10].

Poor understanding of unstable code is a major obstacle
to reasoning about system behavior. For programmers,
compilers that discard unstable code are often “baffling”
and “make no sense” [46], merely gcc’s “creative reinter-
pretation of basic C semantics” [27]. On the other hand,
compiler writers argue that the C standard allows such
optimizations, which many compilers exploit (see §2.3);
it is the “broken code” [17] that programmers should fix.

Who is right in this debate? From the compiler’s point
of view, the programmers made a mistake in their code.
For example, Figure 2 clearly contains a bug, and even
Figure 1 is arguably incorrect given a strict interpretation
of the C standard. However, these bugs are quite subtle,
and understanding them requires detailed knowledge of
the language specification. Thus, it is not surprising that
such bugs continue to proliferate.

From the programmer’s point of view, the compilers are
being too aggressive with their optimizations. However,
optimizations are important for achieving good perfor-
mance; many optimizations fundamentally rely on the
precise semantics of the C language, such as eliminating
needless null pointer checks or optimizing integer loop
variables [20, 29]. Thus, it is difficult for compiler writers
to distinguish legal yet complex optimizations from an op-
timization that goes too far and violates the programmer’s
intent [29: §3].

This paper helps resolve this debate by introducing a
model for identifying unstable code that allows a com-

piler to generate precise warnings when it removes code
based on undefined behavior. The model specifies precise
conditions under which a code fragment can induce un-
defined behavior. Using these conditions we can identify
fragments that can be eliminated under the assumption
that undefined behavior is never triggered; specifically,
any fragment that is reachable only by inputs that trigger
undefined behavior is unstable code. We make this model
more precise in §3.

The Stack checker implements this model to identify
unstable code. For the example in Figure 2, it emits a
warning that the null pointer check !tun is unstable due
to the earlier dereference tun->sk. Stack first computes
the undefined behavior conditions for a wide range of con-
structs, including pointer and integer arithmetic, memory
access, and library function calls. It then uses a constraint
solver [3] to determine whether the code can be simplified
away given the undefined behavior conditions, such as
whether the code is reachable only when the undefined be-
havior conditions are true. We hope that Stack will help
programmers find unstable code in their applications, and
that our model will help compilers make better decisions
about what optimizations might be unsafe and when an
optimizer should produce a warning.

We implemented the Stack checker using the LLVM
compiler framework [30] and the Boolector solver [3].
Applying it to a wide range of systems uncovered 160 new
bugs, which were confirmed and fixed by the developers.
We also received positive feedback from outside users
who, with the help of Stack, fixed additional bugs in both
open-source and commercial code bases. Our experience
shows that unstable code is a widespread threat in systems,
that an adversary can exploit vulnerabilities caused by
unstable code with major compilers, and that Stack is
useful for identifying unstable code.

The main contributions of this paper are:

• a new model for understanding unstable code,

• a static checker for identifying unstable code, and

• a detailed case study of unstable code in real systems.

Another conclusion one can draw from this paper is
that language designers should be careful with defining
language construct as undefined behavior. Almost every
language allows a developer to write programs that have
undefined meaning according to the language specifica-
tion. Our experience with C/C++ indicates that being
liberal with what is undefined can lead to subtle bugs.

The rest of the paper is organized as follows. §2 pro-
vides background information. §3 presents our model of
unstable code. §4 outlines the design of Stack. §5 sum-
marizes its implementation. §6 reports our experience of
applying Stack to identify unstable code and evaluates
Stack’s techniques. §7 covers related work. §8 concludes.

261

Construct Sufficient condition Undefined behavior

Language p + x p∞ + x∞ < [0, 2n − 1] pointer overflow
∗p p = NULL null pointer dereference
x ops y x∞ ops y∞ < [−2n−1, 2n−1 − 1] signed integer overflow
x / y, x % y y = 0 division by zero
x << y, x >> y y < 0 ∨ y ≥ n oversized shift
a[x] x < 0 ∨ x ≥ ARRAY_SIZE(a) buffer overflow

Library abs(x) x = −2n−1 absolute value overflow
memcpy(dst, src, len) |dst − src| < len overlapping memory copy
use q after free(p) alias(p, q) use after free
use q after p′ B realloc(p, ...) alias(p, q) ∧ p′ , NULL use after realloc

Figure 3: A list of sufficient (though not necessary) conditions for undefined behavior in certain C constructs [24: §J.2]. Here p, p′, q
are n-bit pointers; x, y are n-bit integers; a is an array, the capacity of which is denoted as ARRAY_SIZE(a); ops refers to binary operators
+, -, *, /, % over signed integers; x∞ means to consider x as infinitely ranged; NULL is the null pointer; alias(p, q) predicates whether p and q
point to the same object.

2 Background
This section provides some background on undefined be-
havior and how it can lead to unstable code. It builds on
earlier surveys [26, 41, 49] and blog posts [29, 39, 40] that
describe unstable code examples, and extends them by
investigating the evolution of optimizations in compilers.

2.1 Undefined behavior
Figure 3 shows a list of constructs and their undefined be-
havior conditions, as specified in the C standard [24: §J.2].
One category of undefined behavior is simply program-
ming errors, such as null pointer dereference, buffer over-
flow, and use after free. The other category is non-portable
constructs, the hardware implementations of which often
have subtle differences.

For instance, when signed integer overflow or division
by zero occurs, a division instruction traps on x86 [22:
§3.2], while it silently produces an undefined result on
PowerPC [21: §3.3.8]. Another example is shift instruc-
tions: left-shifting a 32-bit one by 32 bits produces 0 on
ARM and PowerPC, but 1 on x86; however, left-shifting
a 32-bit one by 64 bits produces 0 on ARM, but 1 on x86
and PowerPC. Wang et al.’s survey [49] provides more
details of such architectural differences.

To build a portable system, the language standard could
impose uniform behavior over erroneous or non-portable
constructs, as many higher-level languages do. In doing
so, the compiler would have to synthesize extra instruc-
tions. For example, to enforce well-defined error han-
dling (e.g., run-time exception) on buffer overflow, the
compiler would need to insert extra bounds checks for
memory access operations. Similarly, to enforce a consis-
tent shift behavior on x86, for every x << y the compiler
would need to insert a check against y (unless it is able to
prove that y is not oversized), as follows:

if (y < 0 ∨ y ≥ n) then 0 else x << y.

The C-family languages employ a different approach.
Aiming for system programming, their specifications
choose to trust programmers [23: §0] and assume that
their code will never invoke undefined behavior. This
assumption gives more freedom to the compiler than
simply saying that the result of a particular operation
is architecture-dependent. While it allows the compiler to
generate efficient code without extra checks, the assump-
tion also opens the door to unstable code.

2.2 Examples of unstable code

The top row of Figure 4 shows six representative examples
of unstable code in the form of sanity checks. All of these
checks may evaluate to false and become dead code under
optimizations, even though none appear to directly invoke
undefined behavior. We will use them to test existing
compilers in §2.3.

The check p + 100 < p resembles Figure 1, which is
dead assuming no pointer overflow.

The null pointer check !p with an earlier dereference
is from Figure 2, which is dead assuming no null pointer
dereference.

The check x+100 < x with a signed integer x becomes
dead assuming no signed integer overflow. It once led
to a harsh debate between some C programmers and gcc
developers [17].

Another check x++100 < 0 tests whether optimizations
perform more elaborate reasoning assuming no signed
integer overflow; x+ is known to be positive.

The shift check !(1 << x) was intended to catch a large x,
from a patch to the ext4 file system [31]. It becomes dead
assuming no oversized shift amount.

The check abs(x) < 0 was used in the PHP interpreter
to catch the most negative value (i.e., −2n−1). It becomes
dead when optimizations understand this library function
and assume no absolute value overflow [18].

262

if (p + 100 < p) ∗p; if (!p) if (x + 100 < x) if (x+ + 100 < 0) if (!(1 << x)) if (abs(x) < 0)

gcc-2.95.3 – – O1 – – –
gcc-3.4.6 – O2 O1 – – –
gcc-4.2.1 O0 – O2 – – O2

gcc-4.8.1 O2 O2 O2 O2 – O2

clang-1.0 O1 – – – – –
clang-3.3 O1 – O1 – O1 –
aCC-6.25 – – – – – O3

armcc-5.02 – – O2 – – –
icc-14.0.0 – O2 O1 O2 – –
msvc-11.0 – O1 – – – –
open64-4.5.2 O1 – O2 – – O2

pathcc-1.0.0 O1 – O2 – – O2

suncc-5.12 – O3 – – – –
ti-7.4.2 O0 – O0 O2 – –
windriver-5.9.2 – – O0 – – –
xlc-12.1 O3 – – – – –

Figure 4: Optimizations of unstable code in popular compilers: gcc, clang, aCC, armcc, icc, msvc, open64, pathcc, suncc, TI’s
TMS320C6000, Wind River’s Diab compiler, and IBM’s XL C compiler. In the examples, p is a pointer, x is a signed integer, and x+
is a positive signed integer. In each cell, “On” means that the specific version of the compiler optimizes the check into false and discards it
at optimization level n, while “–” means that the compiler does not discard the check at any level.

2.3 An evolution of optimizations
We chose 12 well-known C/C++ compilers to see what
they do with the unstable code examples: two open-source
compilers (gcc and clang) and ten recent commercial com-
pilers (HP’s aCC, ARM’s armcc, Intel’s icc, Microsoft’s
msvc, AMD’s open64, PathScale’s pathcc, Oracle’s suncc,
TI’s TMS320C6000, Wind River’s Diab compiler, and
IBM’s XL C compiler). For every unstable code example,
we test whether a compiler optimizes the check into false,
and if so, find the lowest optimization level -On at which
it happens. The result is shown in Figure 4.

We further use gcc and clang to study the evolution of
optimizations, as the history is easily accessible. For gcc,
we chose the following representative versions that span
more than a decade:

• gcc 2.95.3, the last 2.x, released in 2001;

• gcc 3.4.6, the last 3.x, released in 2006;

• gcc 4.2.1, the last GPLv2 version, released in 2007
and still widely used in BSD systems;

• gcc 4.8.1, the latest version, released in 2013.

For comparison, we chose two versions of clang, 1.0
released in 2009, and the latest 3.3 released in 2013.

We make the following observations of existing com-
pilers from Figure 4. First, discarding unstable code is
common among compilers, not just in recent gcc versions
as some programmers have claimed [27]. Even gcc 2.95.3
eliminates x + 100 < x. Some compilers discard unstable
code that gcc does not (e.g., clang on 1 << x).

Second, from different versions of gcc and clang, we
see more unstable code discarded as the compilers evolve
to adopt new optimizations. For example, gcc 4.x is

more aggressive in discarding unstable code compared to
gcc 2.x, as it uses a new value range analysis [36].

Third, discarding unstable code occurs with standard
optimization options, mostly at -O2, the default optimiza-
tion level for release build (e.g., autoconf [32: §5.10.3]);
some compilers even discard unstable code at the lowest
level of optimization -O0. Hence, lowering the optimiza-
tion level as Postgres did [28] is an unreliable way of
working around unstable code.

Fourth, optimizations exploit undefined behavior not
only from the core language features, but also from li-
brary functions (e.g., abs [18] and realloc [40]) as the
compilers evolve to understand them.

As compilers improve their optimizations, for example,
by implementing new algorithms (e.g., gcc 4.x’s value
range analysis) or by exploiting undefined behavior from
more constructs (e.g., library functions), we anticipate an
increase in bugs due to unstable code.

3 Model for unstable code
Discarding unstable code, as the compilers surveyed in §2
do, is legal as per the language standard, and thus is not a
compiler bug [39: §3]. But, it is baffling to programmers.
Our goal is to identify such unstable code fragments and
generate warnings for them. As we will see in §6.2, these
warnings often identify code that programmers want to
fix, instead of having the compiler remove it silently. This
goal requires a precise model for understanding unstable
code so as to generate warnings only for code that is
unstable, and not for code that is trivially dead and can
be safely removed. This section introduces a model for
thinking about unstable code and a framework with two
algorithms for identifying it.

263

3.1 Unstable code
To formalize a programmer’s misunderstanding of the C
specification that leads to unstable code, let C⋆ denote
a C dialect that assigns well-defined semantics to code
fragments that have undefined behavior in C. For example,
C⋆ is defined for a flat address space, a null pointer that
maps to address zero, and wrap-around semantics for
pointer and integer arithmetic [38]. A code fragment e is
a statement or expression at a particular source location in
program P. If the compiler can transform the fragment e
in a way that would change P’s behavior under C⋆ but
not under C, then e is unstable code.

Let P[e/e′] be a program formed by replacing e with
some fragment e′ at the same source location. When is it
legal for a compiler to transform P into P[e/e′], denoted
as P { P[e/e′]? In a language specification without
undefined behavior, the answer is straightforward: it is
legal if for every input, both P and P[e/e′] produce the
same result. In a language specification with undefined
behavior, the answer is more complicated; namely, it is
legal if for every input, one of the following is true:

• both P and P[e/e′] produce the same results without
invoking undefined behavior, or

• P invokes undefined behavior, in which case it does
not matter what P[e/e′] does.

Using this notation, we define unstable code below.

Definition 1 (Unstable code). A code fragment e in pro-
gram P is unstable w.r.t. language specifications C and
C⋆ iff there exists a fragment e′ such that P{ P[e/e′] is
legal under C but not under C⋆.

For example, for the sanity checks listed in Figure 4,
a C compiler is entitled to replace them with false, as
this is legal according to the C specification, whereas a
hypothetical C⋆ compiler cannot do the same. Therefore,
these checks are unstable code.

3.2 Approach for identifying unstable code
The above definition captures what unstable code is, but
does not provide a way of finding unstable code, because
it is difficult to reason about how an entire program will
behave. As a proxy for a change in program behavior,
Stack looks for code that can be transformed by some
optimizer O under C but not under C⋆. In particular,
Stack does this using a two-phase scheme:

1. run O without taking advantage of undefined behavior,
which resembles optimizations under C⋆; and

2. run O again, this time taking advantage of undefined
behavior, which resembles (more aggressive) optimiza-
tions under C.

If O optimizes extra code in the second phase, we assume
the reason O did not do so in the first phase is because it

would have changed the program’s semantics under C⋆,
and so Stack considers that code to be unstable.

Stack’s optimizer-based approach to finding unstable
code will miss unstable code that a specific optimizer
cannot eliminate in the second phase, even if there exists
some optimizer that could. This approach will also gener-
ate false reports if the optimizer is not aggressive enough
in eliminating code in the first phase. Thus, one challenge
in Stack’s design is coming up with an optimizer that is
sufficiently aggressive to minimize these problems.

In order for this approach to work, Stack requires an
optimizer that can selectively take advantage of unde-
fined behavior. To build such optimizers, we formalize
what it means to “take advantage of undefined behav-
ior” in §3.2.1, by introducing the well-defined program
assumption, which captures C’s assumption that program-
mers never write programs that invoke undefined behavior.
Given an optimizer that can take explicit assumptions as
input, Stack can turn on (or off) optimizations based on
undefined behavior by supplying (or not) the well-defined
program assumption to the optimizer. We build two ag-
gressive optimizers that follow this approach: one that
eliminates unreachable code (§3.2.2) and one that simpli-
fies unnecessary computation (§3.2.3).

3.2.1 Well-defined program assumption
We formalize what it means to take advantage of unde-
fined behavior in an optimizer as follows. Consider a
program with input x. Given a code fragment e, let Re(x)
denote its reachability condition, which is true iff e will
execute under input x; and let Ue(x) denote its undefined
behavior condition, or UB condition for short, which in-
dicates whether e exhibits undefined behavior on input x,
assuming C semantics (see Figure 3).

Both Re(x) and Ue(x) are boolean expressions. For
example, given a pointer dereference ∗p in expression e,
one UB condition Ue(x) is p = NULL (i.e., causing a null
pointer dereference).

Intuitively, in a well-defined program to dereference
pointer p, p must be non-null. In other words, the nega-
tion of its UB condition, p , NULL, must hold whenever
the expression executes. We generalize this below.

Definition 2 (Well-defined program assumption). A code
fragment e is well-defined on an input x iff executing e
never triggers undefined behavior at e:

Re(x)→ ¬Ue(x). (1)

Furthermore, a program is well-defined on an input iff
every fragment of the program is well-defined on that
input, denoted as ∆:

∆(x) =
∧
e∈P

Re(x)→ ¬Ue(x). (2)

264

1: procedure Eliminate(P)
2: for all e ∈ P do
3: if Re(x) is UNSAT then
4: Remove(e) ◃ trivially unreachable
5: else
6: if Re(x) ∧ ∆(x) is UNSAT then
7: Report(e)
8: Remove(e) ◃ unstable code eliminated

Figure 5: The elimination algorithm. It reports unstable code that
becomes unreachable with the well-defined program assumption.

3.2.2 Eliminating unreachable code
The first algorithm identifies unstable statements that can
be eliminated (i.e., P{ P[e/∅] where e is a statement).
For example, if reaching a statement requires triggering
undefined behavior, then that statement must be unreach-
able. We formalize this below.

Theorem 1 (Elimination). In a well-defined program P,
an optimizer can eliminate code fragment e, if there is no
input x that both reaches e and satisfies the well-defined
program assumption ∆(x):

@x : Re(x) ∧ ∆(x). (3)

The boolean expression Re(x) ∧ ∆(x) is referred as the
elimination query.

Proof. Assuming ∆(x) is true, if the elimination query
Re(x)∧∆(x) always evaluates to false, then Re(x) must be
false, meaning that e must be unreachable. One can then
safely eliminate e. �

Consider Figure 2 as an example. There is one input
tun in this program. To pass the earlier if check, the
reachability condition of the return statement is !tun.
There is one UB condition tun = NULL, from the pointer
dereference tun->sk, the reachability condition of which
is true. As a result, the elimination query Re(x)∧∆(x) for
the return statement is:

!tun ∧ (true→ ¬(tun = NULL)).

Clearly, there is no tun that satisfies this query. Therefore,
one can eliminate the return statement.

With the above definition it is easy to construct an al-
gorithm to identify unstable due to code elimination (see
Figure 5). The algorithm first removes unreachable frag-
ments without the well-defined program assumption, and
then warns against fragments that become unreachable
with this assumption. The latter are unstable code.

3.2.3 Simplifying unnecessary computation
The second algorithm identifies unstable expressions that
can be optimized into a simpler form (i.e., P{ P[e/e′]
where e and e′ are expressions). For example, if eval-
uating a boolean expression to true requires triggering

1: procedure Simplify(P, oracle)
2: for all e ∈ P do
3: for all e′ ∈ Propose(oracle, e) do
4: if e(x) , e′(x) ∧ Re(x) is UNSAT then
5: Replace(e, e′)
6: break ◃ trivially simplified
7: if e(x) , e′(x) ∧ Re(x) ∧ ∆(x) is UNSAT then
8: Report(e)
9: Replace(e, e′)

10: break ◃ unstable code simplified

Figure 6: The simplification algorithm. It asks an oracle to propose
a set of possible e′, and reports if any of them is equivalent to e with
the well-defined program assumption.

undefined behavior, then that expression must evaluate to
false. We formalize this below.

Theorem 2 (Simplification). In a well-defined pro-
gram P, an optimizer can simplify expression e with
another e′, if there is no input x that evaluates e(x) and
e′(x) to different values, while both reaching e and satis-
fying the well-defined program assumption ∆(x):

∃e′@x : e(x) , e′(x) ∧ Re(x) ∧ ∆(x). (4)

The boolean expression e(x) , e′(x) ∧ Re(x) ∧ ∆(x) is
referred as the simplification query.

Proof. Assuming ∆(x) is true, if the simplification query
e(x) , e′(x)∧Re(x)∧∆(x) always evaluates to false, then
either e(x) = e′(x), meaning that they evaluate to the same
value; or Re(x) is false, meaning that e is unreachable. In
either case, one can safely replace e with e′. �

Simplification relies on an oracle to propose e′ for a
given expression e. Note that there is no restriction on the
proposed expression e′. In practice, it should be simpler
than the original e since compilers tend to simplify code.
Stack currently implements two oracles:

• Boolean oracle: propose true and false in turn for a
boolean expression, enumerating possible values.

• Algebra oracle: propose to eliminate common terms
on both sides of a comparison if one side is a subex-
pression of the other. It is useful for simplifying non-
constant expressions, such as proposing y < 0 for
x + y < x, by eliminating x from both sides.

As an example, consider simplifying p+100 < p using
the boolean oracle, where p is a pointer. For simplicity
assume its reachability condition is true. From Figure 3,
the UB condition of p + 100 is p∞ + 100∞ < [0, 2n − 1].
The boolean oracle first proposes true. The corresponding
simplification query is:

(p + 100 < p) , true
∧ true ∧ (true→ ¬(p∞ + 100∞ < [0, 2n − 1])) .

265

Compiler
frontend (§4.2)

UB condition
insertion (§4.3)

Solver-based
optimization (§4.4)

Bug report
generation (§4.5)

C IR

Figure 7: Stack’s workflow. It invokes clang to convert a C/C++ program into LLVM IR, and then detects unstable code based on the IR.

Clearly, this is satisfiable. The boolean oracle then pro-
poses false. This time the simplification query is:

(p + 100 < p) , false
∧ true ∧ (true→ ¬(p∞ + 100∞ < [0, 2n − 1])) .

Since there is no pointer p that satisfies this query, one
can fold p+ 100 < p into false. §6.2.2 will show more ex-
amples of identifying unstable code using simplification.

With the above definition it is straightforward to con-
struct an algorithm to identify unstable code due to simpli-
fication (see Figure 6). The algorithm consults an oracle
for every possible simpler form e′ for expression e. Simi-
larly to elimination, it warns if it finds e′ that is equivalent
to e only with the well-defined program assumption.

3.3 Discussion
The model focuses on discarding unstable code by ex-
ploring two basic optimizations, elimination because of
unreachability and simplification because of unnecessary
computation. It is possible to exploit the well-defined pro-
gram assumption in other forms. For example, instead of
discarding code, some optimizations reorder instructions
and produce unwanted code due to memory aliasing [47]
or data races [2], which Stack does not model.

Stack implements two oracles, boolean and algebra,
for proposing new expressions for simplification. One
can extend it by introducing new oracles.

4 Design
This section describes the design of the Stack checker
that detects unstable code by mimicking an aggressive
compiler. A challenge in designing Stack is to make
it scale to large programs. To address this challenge,
Stack uses variants of the algorithms presented in §3
that work on individual functions. A further challenge is
to avoid reporting false warnings for unstable code that
is generated by the compiler itself, such as macros and
inlined functions.

4.1 Overview
Stack works in four stages, as illustrated in Figure 7. In
the first stage, a user prepends a script stack-build to
the actual building command, such as:

% stack-build make

The script stack-build intercepts invocations to gcc and
invokes clang instead to compile source code into the
LLVM intermediate representation (IR). The remaining
three stages work on the IR.

In the second stage, Stack inserts UB conditions listed
in Figure 3 into the IR. In the third stage, it performs
a solver-based optimization using a variant of the algo-
rithms described in §3.2. In the fourth stage, Stack gen-
erates a bug report of unstable code discarded by the
solver-based optimization, with the corresponding set of
UB conditions. For example, for Figure 2 Stack links
the null pointer check !tun to the earlier pointer derefer-
ence tun->sk.

4.2 Compiler frontend
Stack invokes clang to compile C-family source code to
the LLVM IR for the rest of the stages. Furthermore, to
detect unstable code across functions, it invokes LLVM
to inline functions, and works on individual functions
afterwards for better scalability.

A challenge is that Stack should focus on unstable
code written by programmers, and ignore code generated
by the compiler (e.g., from macros and inline functions).
Consider the code snippet below:

#define IS_A(p) (p != NULL && p->tag == TAG_A)
p->tag == ...;
if (IS_A(p)) ...;

Assume p is a pointer passed from the caller. Ideally,
Stack could inspect the callers and check whether p can
be null. However, Stack cannot do this because it works
on individual functions. Stack would consider the null
pointer check p != NULL unstable due to the earlier deref-
erence p->tag. In our experience, this causes a large
number of false warnings, because programmers do not
directly write the null pointer check but simply reuse the
macro IS_A. To reduce false warnings, Stack ignores
such compiler-generated code by tracking code origins,
at the cost of missing possible bugs (see §4.6).

To do so, Stack implements a clang plugin to record the
original macro for macro-expanded code in the IR during
preprocessing and compilation. Similarly, it records the
original function for inlined code in the IR during inlin-
ing. The final stage uses the recorded origin information
to avoid generating bug reports for compiler-generated
unstable code (see §4.5).

4.3 UB condition insertion
Stack implements the UB conditions listed in Figure 3.
For each UB condition, Stack inserts a special function
call into the IR at the corresponding instruction:

void bug_on(bool expr);

266

This function takes one boolean argument as the UB con-
dition of the instruction.

It is straightforward to represent UB conditions as a
boolean argument in the IR. For example, for a divi-
sion x/y, Stack inserts bug_on(y = 0) for division by zero.
The next stage uses these bug_on calls to compute the
well-defined program assumption.

4.4 Solver-based optimization
To detect unstable code, Stack runs the algorithms de-
scribed in §3.2 in the following order:
• elimination,
• simplification with the boolean oracle, and
• simplification with the algebra oracle.

To implement these algorithms, Stack consults the
Boolector solver [3] to decide satisfiability for elimination
and simplification queries, as shown in (3) and (4). Both
queries need to compute the terms Re(x)∧∆(x). However,
it is practically infeasible to precisely compute them for
large programs. By definition, computing the reachability
condition Re(x) requires inspecting all paths from the start
of the program, and computing the well-defined program
assumption ∆(x) requires inspecting the entire program
for UB conditions. Neither scales to a large program.

To address this challenge, Stack computes approximate
queries by limiting the computation to a single function.
To describe the impact of this change, we use the fol-
lowing two terms. First, let R′e(x) denote fragment e’s
reachability condition from the start of current function;
Stack replaces Re(x) with R′e. Second, let dom(e) denote
e’s dominators [35: §7.3], the set of fragments that ev-
ery execution path reaching e must have reached; Stack
replaces the well-defined program assumption ∆(x) over
the entire program with that over dom(e).

With these terms we describe the variant of the algo-
rithms for identifying unstable code by computing ap-
proximate queries. Stack eliminates fragment e if the
following query is unsatisfiable:

R′e(x) ∧
∧

d∈dom(e)

¬Ud(x). (5)

Similarly, Stack simplifies e into e′ if the following query
is unsatisfiable:

e(x) , e′(x) ∧ R′e(x) ∧
∧

d∈dom(e)

¬Ud(x). (6)

Appendix A provides a proof that using both approximate
queries still correctly identifies unstable code.

Stack computes the approximate queries as follows. To
compute the reachability condition R′e(x) within current
function, Stack uses Tu and Padua’s algorithm [48]. To
compute the UB condition

∧
d∈dom(e) ¬Ud(x), Stack col-

lects them from the bug_on calls within e’s dominators.

1: procedure MinUBCond(Qe

[
= H ∧

∧
d∈dom(e) ¬Ud(x)

]
)

2: ubset ← ∅
3: for all d ∈ dom(e) do
4: Q′e ← H ∧

∧
d′∈dom(e)\{d} ¬Ud′ (x)

5: if Q′e is SAT then
6: ubset ← ubset ∪ {Ud}

7: return ubset

Figure 8: Algorithm for computing the minimal set of UB condi-
tions that lead to unstable code given query Qe for fragment e.

4.5 Bug report generation
Stack generates a bug report for unstable code based
on the solver-based optimization. First, it inspects the
recorded origin of each unstable code case in the IR, and
ignores code that is generated by the compiler, rather than
written by the programmer.

To help users understand the bug report, Stack reports
the minimal set of UB conditions that make each report’s
code unstable [8], using the following greedy algorithm.

Let Qe be the query with which Stack decided that
fragment e is unstable. The query Qe then must be unsat-
isfiable. From (5) and (6), we know that the query must
be in the following form:

Qe = H ∧
∧

d∈dom(e)

¬Ud(x). (7)

H denotes the term(s) excluding
∧

d∈dom(e) ¬Ud(x) in Qe.
The goal is to find the minimal set of UB conditions that
help make Qe unsatisfiable.

To do so, Stack masks out each UB condition in e’s
dominators from Qe individually to form a new query Q′e;
if the new query Q′e becomes satisfiable, then the UB
condition masked out is crucial for making fragment e
unstable. The complete algorithm is listed in Figure 8.

4.6 Limitations
The list of undefined behavior Stack implements (see Fig-
ure 3) is incomplete. For example, it misses violations
of strict aliasing [24: §6.5] and uses of uninitialized vari-
ables [24: §6.3.2.1]. We decided not to implement them
because gcc already issues decent warnings for both cases.
It would be easy to extend Stack to do so as well.

Moreover, since our focus is to find subtle code changes
due to optimizations, we choose not to implement unde-
fined behavior that occurs in the frontend. One example
is evaluating (x = 1) + (x = 2); this fragment has un-
defined behavior due to “unsequenced side effects” [24:
§6.5/p2]. We believe that the frontend rather than the
optimizer should be able to warn against such cases.

As discussed in §4.4, Stack implements approximation
algorithms for better scalability, using approximate reach-
ability and UB conditions. Stack may miss unstable code
due to these approximations. As Stack consults a con-
straint solver with elimination and simplification queries,

267

bugs pointer null integer div shift buffer abs memcpy free realloc

Binutils 8 6 1 1
e2fsprogs 3 1 1 1
FFmpeg+Libav 21 9 6 1 1 3 1
FreeType 3 3
GRUB 2 2
HiStar [52] 3 1 2
Kerberos 11 1 9 1
libX11 2 2
libarchive 2 2
libgcrypt 2 2
Linux kernel 32 1 6 1 2 10 5 5 2
Mozilla 3 2 1
OpenAFS 11 6 4 1
plan9port 3 1 1 1
Postgres 9 1 7 1
Python 5 5
QEMU 4 3 1
Ruby+Rubinius 2 1 1
Sane 8 1 7
uClibc 2 2
VLC 2 2
Xen 3 1 1 1
Xpdf 9 8 1
others (⋆) 10 1 5 2 1 1

all 160 29 44 23 7 23 14 1 7 9 3

(⋆) Bionic, Dune [1], file, GMP, Mosh [51], MySQL, OpenSSH, OpenSSL, PHP, Wireshark.

Figure 9: New bugs identified by Stack. We also break down the number of bugs by undefined behavior from Figure 3: “pointer” (pointer
overflow), “null” (null pointer dereference), “integer” (signed integer overflow), “div” (division by zero), “shift” (oversized shift),
“buffer” (buffer overflow), “abs” (absolute value overflow), “memcpy” (overlapped memory copy), “free” (use after free), and “realloc” (use
after realloc).

Stack will also miss unstable code if the solver times out.
See §6.6 for a completeness evaluation.

Stack reports false warnings when it flags redundant
code as unstable, as programmers sometimes simply write
useless checks that have no effects (see §6.2.4). Note
that even though such redundant code fragments are false
warnings, discarding them is allowed by the specification.

5 Implementation
We implemented Stack using the LLVM compiler frame-
work [30] and the Boolector solver [3]. Stack consists of
approximately 4,000 lines of C++ code.

6 Evaluation
This section answers the following questions:

• Is Stack useful for finding new bugs? (§6.1)

• What kinds of unstable code does Stack find? (§6.2)

• How precise are Stack’s bug reports? (§6.3)

• How long does Stack take to analyze a large sys-
tem? (§6.4)

• How prevalent is unstable code in real systems, and
what undefined behavior causes it? (§6.5)

• What unstable code does Stack miss? (§6.6)

6.1 New bugs
From July 2012 to March 2013, we periodically applied
Stack to systems software written in C/C++ to identify
unstable code. The systems Stack analyzed are listed
in Figure 9, and include OS kernels, virtual machines,
databases, multimedia encoders/decoders, language run-
times, and security libraries. Based on Stack’s bug re-
ports, we submitted patches to the corresponding devel-
opers. The developers confirmed and fixed 160 new bugs.
The results show that unstable code is widespread, and
that Stack is useful for identifying unstable code.

We also break down the bugs by type of undefined
behavior. The results show that several kinds of undefined
behavior contribute to the unstable code bugs.

6.2 Analysis of bug reports
This subsection reports our experience of finding and
fixing unstable code with the aid of Stack. We manu-

268

int64_t arg1 = ...;
int64_t arg2 = ...;
if (arg2 == 0)

ereport(ERROR, ...);
int64_t result = arg1 / arg2;
if (arg2 == -1 && arg1 < 0 && result <= 0)

ereport(ERROR, ...);

Figure 10: An invalid signed division overflow check in Postgres,
where the division precedes the check. A malicious SQL query will
crash it on x86-64 by exploiting signed division overflow.

ally classify Stack’s bug reports into the following four
categories based on the impact:

• non-optimization bugs, causing problems regardless
of optimizations;

• urgent optimization bugs, where existing compilers are
known to cause problems with optimizations turned
on, but not with optimizations turned off;

• time bombs, where no known compilers listed in §2.3
cause problems with optimizations, though Stack does
and future compilers may do so as well; and

• redundant code: false warnings, such as useless checks
that compilers can safely discard.

The rest of this subsection illustrates each category using
examples from Stack’s bug reports. All the bugs de-
scribed next were previously unknown but now have been
confirmed and fixed by the corresponding developers.

6.2.1 Non-optimization bugs
Non-optimization bugs are unstable code that causes prob-
lems even without optimizations, such as the null pointer
dereference bug shown in Figure 2, which directly invokes
undefined behavior.

To illustrate the subtle consequences of invoking unde-
fined behavior, consider the implementation of the 64-bit
signed division operator for SQL in the Postgres database,
as shown in Figure 10. The code first rejects the case
where the divisor is zero. Since 64-bit integers range
from −263 to 263 − 1, the only overflow case is −263/−1,
where the expected quotient 263 exceeds the range and
triggers undefined behavior. The Postgres developers in-
correctly assumed that the quotient must wrap around to
−263 in this case, as in some higher-level languages (e.g.,
Java), and tried to catch it by examining the overflowed
quotient after the division, using the following check:

arg2 == -1 && arg1 < 0 && arg1 / arg2 <= 0.

Stack identifies this check as unstable code: the divi-
sion implies that the overflow must not occur to avoid
undefined behavior, and thus the overflow check after the
division must be false.

While signed division overflow is undefined behavior
in C, the corresponding x86-64 instruction IDIV traps
on overflow. One can exploit this to crash the database

char buf[15]; /* filled with data from user space */
unsigned long node;
char *nodep = strchr(buf, ’.’) + 1;
if (!nodep)

return -EIO;
node = simple_strtoul(nodep, NULL, 10);

Figure 11: An incorrect null pointer check in the Linux sysctl im-
plementation for /proc/sys/net/decnet/node_address. A correct
null check should test the result of strchr, rather than that plus
one, which is always non-null.

server on x86-64 by submitting a SQL query that invokes
−263/−1, such as:

SELECT ((-9223372036854775808)::int8) / (-1);

Interestingly, we notice that the Postgres developers tested
the −263/−1 crash in 2006, but incorrectly concluded that
this “seemed OK” [34]. We believe the reason is that they
tested Postgres on x86-32, where there was no 64-bit IDIV
instruction. In that case, the compiler would generate a
call to a library function lldiv for 64-bit signed division,
which returns −263 for −263/−1 rather than a hardware
trap. The developers hence overlooked the crash issue.

To fix this bug, we submitted a straightforward patch
that checks whether arg1 is −263 and arg2 is −1 before
arg1/arg2. However, the Postgres developers insisted on
their own fix. Particularly, instead of directly comparing
arg1 with −263, they chose the following check:

arg1 != 0 && (-arg1 < 0) == (arg1 < 0).

Stack identifies this check as unstable code for similar
reasons: the negation −arg1 implies that arg1 cannot be
−263 to avoid undefined behavior, and thus the check must
be false. We will further analyze this check in §6.2.3.

By identifying unstable code, Stack is also useful for
uncovering programming errors that do not directly in-
voke undefined behavior. Figure 11 shows an incorrect
null pointer check from the Linux kernel. The intention
of this check was to reject a network address without any
dots. Since strchr(buf, ’.’) returns null if it cannot
find any dots in buf, a correct check should check whether
its result is null, rather than that plus one. One can bypass
the check !nodep with a malformed network address from
user space and trigger an invalid read at page zero. Stack
identifies the check !nodep as unstable code, because un-
der the no-pointer-overflow assumption nodep (a pointer
plus one) must be non-null.

6.2.2 Urgent optimization bugs
Urgent optimization bugs are unstable code that existing
compilers already optimize to cause problems. §2.2 de-
scribed a set of examples where compilers either discard
the unstable code or rewrite it into some vulnerable form.

To illustrate the consequences, consider the code snip-
pet from FFmpeg/Libav for parsing Adobe’s Action Mes-
sage Format, shown in Figure 12. The parsing code starts

269

const uint8_t *data = /* buffer head */;
const uint8_t *data_end = /* buffer tail */;
int size = bytestream_get_be16(&data);
if (data + size >= data_end || data + size < data)

return -1;
data += size;
...
int len = ff_amf_tag_size(data, data_end);
if (len < 0 || data + len >= data_end

|| data + len < data)
return -1;

data += len;
/* continue to read data */

Figure 12: Unstable bounds checks in the form data + x < data
from FFmpeg/Libav, which gcc optimizes into x < 0.

void pdec(io *f, int k) {
if (k < 0) { /* print negative k */

if (-k >= 0) { /* not INT_MIN? */
pchr(f, ’-’); /* print minus */
pdec(f, -k); /* print -k */
return;

}
... /* print INT_MIN */
return;

}
... /* print positive k */

}

Figure 13: An unstable integer check in plan9port. The function
pdec prints a signed integer k; gcc optimizes the check -k >= 0 into
true when it learns that k is negative, leading to an infinite loop if
the input k is INT_MIN.

with two pointers, data pointing to the head of the input
buffer, and data_end pointing to one past the end. It first
reads in an integer size from the input buffer, and fails if
the pointer data+size falls out of the bounds of the input
buffer (i.e., between data and data_end). The intent of
the check data+size < data is to reject a large size that
causes data + size to wrap around to a smaller pointer
and bypass the earlier check data + size >= data_end.
The parsing code later reads in another integer len and
performs similar checks.

Stack identifies the two pointer overflow checks in the
form data + x < data as unstable code, where x is a
signed integer (e.g., size and len). Specifically, with the
algebra oracle Stack simplifies the check data+ x < data
into x < 0, and warns against this change. Note that this
is slightly different from Figure 1: x is a signed integer,
rather than unsigned, so the check is not always false
under the well-defined program assumption.

Both gcc and clang perform similar optimizations, by
rewriting data + x < data into x < 0. As a result, a large
size or len from malicious input is able to bypass the
checks, leading to an out-of-bounds read. A correct fix
is to replace data + x >= data_end || data + x < data
with x >= data_end − data, which is simpler and also
avoids invoking undefined behavior; one should also add
the check x < 0 if x can be negative.

int64_t arg1 = ...;
if (arg1 != 0 && ((-arg1 < 0) == (arg1 < 0)))

ereport(ERROR, ...);

Figure 14: A time bomb in Postgres. The intention is to check
whether arg1 is the most negative value −2n−1, similar to Figure 13.
struct p9_client *c = ...;
struct p9_trans_rdma *rdma = c->trans;
...
if (c)

c->status = Disconnected;

Figure 15: Redundant code from the Linux kernel, where the caller
of this code snippet ensures that c must be non-null and the null
pointer check against c is always true.

Figure 13 shows an urgent optimization bug that leads
to an infinite loop from plan9port. The function pdec is
used to print a signed integer k; if k is negative, the code
prints the minus symbol and then invokes pdec again with
the negation −k. Assuming k is an n-bit integer, one spe-
cial case is k being −2n−1 (i.e., INT_MIN), the negation
of which is undefined. The programmers incorrectly as-
sumed that -INT_MIN would wrap around to INT_MIN and
remain negative, so they used the check −k >= 0 to filter
out INT_MIN when k is known to be negative.

Stack identifies the check −k >= 0 as unstable code;
gcc also optimizes the check into true as it learns that k is
negative from the earlier k < 0. Consequently, invoking
pdec with INT_MIN will lead an infinite loop, printing
the minus symbol repeatedly. A simple fix is to replace
−k >= 0 with a safe form k != INT_MIN.

6.2.3 Time bombs
A time bomb is unstable code that is harmless at present,
since no compiler listed in §2.3 can currently optimize
it. But this situation may change over time. §2.3 already
showed how past compiler changes trigger time bombs
to become urgent optimization bugs. §6.2.1 illustrated
how a time bomb in Postgres emerged as the x86 pro-
cessor evolved: the behavior of 64-bit signed division on
overflow changed from silent wraparound to trap, allow-
ing one to crash the database server with malicious SQL
queries.

Figure 14 shows a time bomb example from Postgres.
As mentioned in §6.2.1, the Postgres developers chose
this approach to check whether arg1 is −263 without using
the constant value of −263; their assumption was that the
negation of a non-zero integer would have a different sign
unless it is −263.

The code currently works; the time bomb does not go
off, and does not cause any problems, unlike its “equiva-
lent” form in Figure 13. This luck relies on the fact that
no production compilers discard it. Nonetheless, Stack
identifies the check as unstable code, and we believe that
some research compilers such as Bitwise [43] already dis-
card the check. Relying on compilers to not optimize time

270

build time analysis time # files # queries # query timeouts

Kerberos 1 min 2 min 705 79,547 2 (0.003%)
Postgres 1 min 11 min 770 229,624 1,131 (0.493%)
Linux kernel 33 min 62 min 14,136 3,094,340 1,212 (0.039%)

Figure 16: Stack’s performance numbers when running it against Kerberos, Postgres, and the Linux kernel, including the build time, the
analysis time, the number of files, the number of total queries Stack made, and the number of queries that timed out.

bombs for system security is risky, and we recommend
fixing problems flagged by Stack to avoid this risk.

6.2.4 Redundant code

Figure 15 shows an example of redundant code from
the Linux kernel. Stack identifies the null pointer check
against the pointer c in the if condition as unstable code,
due to the earlier dereference c->trans. The caller of the
code snippet ensures that the pointer c must be non-null,
so the check is always true. Our experience shows that
redundant code comprises only a small portion of unstable
code that Stack reports (see §6.3).

Depending on their coding conventions, it is up to pro-
grammers to decide whether to keep redundant code.
Based on the feedback from Stack’s users, we have
learned that programmers often prefer to remove such
redundant checks or convert them to assertions for better
code quality, even if they are not real bugs.

6.3 Precision
To understand the precision of Stack’s results, we further
analyzed every bug report Stack produced for Kerberos
and Postgres. The results below show that Stack has a
low rate of false warnings (i.e., redundant code).

Kerberos. Stack reported 11 bugs in total, all of which
were confirmed and fixed by the developers. In addition,
the developers determined that one of them was remotely
exploitable and requested a CVE identifier (CVE-2013-
1415) for this bug. After the developers fixed these bugs,
Stack produced zero reports.

Postgres. Stack reported 68 bugs in total. The develop-
ers promptly fixed 9 of them after we demonstrated how
to crash the database server by exploiting these bugs, as
described in §6.2.1. We further discovered that Intel’s icc
and PathScale’s pathcc compilers discarded 29 checks,
which Stack identified as unstable code (i.e., urgent op-
timization bugs), and reported these problems to the de-
velopers. At the writing of this paper, the strategies for
fixing them are still under discussion.

Stack found 26 time bombs (see §6.2.3 for one exam-
ple); we did not submit patches to fix these time bombs
given the developers’ hesitation in fixing urgent optimiza-
tion bugs. Stack also produced 4 bug reports that identi-
fied redundant code, which did not need fixing.

algorithm # reports # packages

elimination 23,969 2,079
simplification (boolean oracle) 47,040 2,672
simplification (algebra oracle) 871 294

Figure 17: Number of reports generated by each of Stack’s algo-
rithms from §3.2 for all Debian Wheezy packages, and the number
of packages for which at least one such report was generated.

6.4 Performance
To measure the running time of Stack, we ran it against
Kerberos, Postgres, and the Linux kernel (with all mod-
ules enabled), using their source code from March 23,
2013. The experiments were conducted on a 64-bit
Ubuntu Linux machine with an Intel Core i7-980 3.3 GHz
CPU and 24 GB of memory. The processor has 6 cores,
and each core has 2 hardware threads.

Stack built and analyzed each package using 12 pro-
cesses in parallel. We set a timeout of 5 seconds for each
query to the solver (including computing the UB condi-
tion set as described in §4.5). Figure 16 lists the build
time, the analysis time, the number of files, the number of
total queries to the solver, and the number of query time-
outs. The results show that Stack can finish analyzing a
large system within a reasonable amount of time.

We noticed a small number of solver timeouts (less
than 0.5%) due to complex reachability conditions, often
at the end of a function. Stack would miss unstable code
in such cases. To avoid this, one can increase the timeout.

6.5 Prevalence of unstable code
We applied Stack to all 17,432 packages in the Debian
Wheezy archive as of March 24, 2013. Stack checked
8,575 of them that contained C/C++ code. Building and
analyzing these packages took approximately 150 CPU-
days on Intel Xeon E7-8870 2.4 GHz processors.

For 3,471 out of these 8,575 packages, Stack detected
at least one instance of unstable code. This suggests that
unstable code is a widespread problem.

Figure 17 shows the number of reports generated by
each of Stack’s algorithms. These results suggest that
they are all useful for identifying unstable code.

Each of Stack’s reports contains a set of UB conditions
that cause the code to be unstable. Figure 18 shows the
number of times each kind of UB condition showed up
in a report. These numbers confirm that many kinds of
undefined behavior lead to unstable code in practice.

271

UB condition # reports # packages

null pointer dereference 59,230 2,800
buffer overflow 5,795 1,064
signed integer overflow 4,364 780
pointer overflow 3,680 614
oversized shift 594 193
aliasing 330 70
overlapping memory copy 227 47
division by zero 226 95
use after free 156 79
other libc (cttz, ctlz) 132 7
absolute value overflow 86 23
use after realloc 22 10

Figure 18: Number of reports that involve each of Stack’s UB con-
ditions from Figure 3 for all Debian Wheezy packages, and the
number of packages for which at least one such report was gen-
erated.

As described in §4.5, Stack computes a minimal set
of UB conditions necessary for each instance of unstable
code. Most unstable code reports (69,301) were the result
of just one UB condition, but there were also 2,579 reports
with more than one UB condition, and there were even
4 reports involving eight UB conditions. These numbers
confirm that some unstable code is caused by multiple
undefined behaviors, which suggests that automatic tools
such as Stack are necessary to identify them. Program-
mers are unlikely to find them by manual inspection.

6.6 Completeness
Stack is able to identify all the unstable code examples de-
scribed in §2.3. However, it is difficult to known precisely
how much unstable code Stack would miss in general. In-
stead we analyze what kind of unstable code Stackmisses.
To do so, we collected all examples from Regehr’s “un-
defined behavior consequences contest” winners [40] and
Wang et al.’s undefined behavior survey [49] as a bench-
mark, a total of ten tests from real systems.

Stack identified unstable code in seven out of the ten
tests. Stack missed three for the following reasons. As
described in §4.6, Stack missed two because we chose
not to implement their UB conditions for violations of
strict aliasing and uses of uninitialized variables; it would
be easy to extend Stack to do so. The other case Stack
missed was due to approximate reachability conditions,
also mentioned in §4.6.

7 Related work
To the best of our knowledge, we present the first defini-
tion and static checker to find unstable code, but we build
on several pieces of related work. In particular, earlier
surveys [26, 41, 49] and blog posts [29, 39, 40] collect
examples of unstable code, which motivated us to tackle
this problem. We were also motivated by related tech-

niques that can help with addressing unstable code, which
we discuss next.

Testing strategies. Our experience with unstable code
shows that in practice it is difficult for programmers to
notice certain critical code fragments disappearing from
the running system as they are silently discarded by the
compiler. Maintaining a comprehensive test suite may
help catch “vanished” code in such cases, though doing
so often requires a substantial effort to achieve high code
coverage through manual test cases. Programmers may
also need to prepare a variety of testing environments as
unstable code can be hardware- and compiler-dependent.

Automated tools such as KLEE [4] can generate test
cases with high coverage using symbolic execution. These
tools, however, often fail to model undefined behavior
correctly. Thus, they may interpret the program differently
from the language standard and miss bugs. Consider a
check x + 100 < x, where x is a signed integer. KLEE
considers x + 100 to wrap around given a large x; in other
words, the check catches a large x when executing in
KLEE, even though gcc discards the check. Therefore, to
detect unstable code, these tools need to be augmented
with a model of undefined behavior, such as the one we
proposed in this paper.

Optimization strategies. We believe that programmers
should avoid undefined behavior, and we provide sugges-
tions for fixing unstable code in §6.2. However, overly
aggressive compiler optimizations are also responsible for
triggering these bugs. Traditionally, compilers focused on
producing fast and small code, even at the price of sacri-
ficing security, as shown in §2.2. Compiler writers should
rethink optimization strategies for generating secure code.

Consider x + 100 < x with a signed integer x again.
The language standard does allow compilers to consider
the check to be false and discard it. In our experience,
however, it is unlikely that the programmer intended the
code to be removed. A programmer-friendly compiler
could instead generate efficient overflow checking code,
for example, by exploiting the overflow flag available on
many processors after evaluating x + 100. This strategy,
also allowed by the language standard, produces more
secure code than discarding the check. Alternatively,
the compiler could produce warnings when exploiting
undefined behavior in a potentially surprising way [19].

Currently, gcc provides several options to alter the com-
piler’s assumptions about undefined behavior, such as

• -fwrapv, assuming signed integer wraparound for ad-
dition, subtraction, and multiplication;

• -fno-strict-overflow, assuming pointer arithmetic
wraparound in addition to -fwrapv; and

• -fno-delete-null-pointer-checks [44], assuming
unsafe null pointer dereferences.

272

These options can help reduce surprising optimizations,
at the price of generating slower code. However, they
cover an incomplete set of undefined behavior that may
cause unstable code (e.g., no options for shift or division).
Another downside is that these options are specific to gcc;
other compilers may not support them or interpret them
in a different way [49].

Checkers. Many existing tools can detect undefined be-
havior as listed in Figure 3. For example, gcc provides the
-ftrapv option to insert run-time checks for signed inte-
ger overflows [42: §3.18]; IOC [11] (now part of clang’s
sanitizers [9]) and Kint [50] cover a more complete set
of integer errors; Saturn [12] finds null pointer derefer-
ences; several dedicated C interpreters such as kcc [14]
and Frama-C [5] perform checks for undefined behavior.
See Chen et al.’s survey [6] for a summary.

In complement to these checkers that directly target un-
defined behavior, Stack finds unstable code that becomes
dead due to undefined behavior. In this sense, Stack can
be considered as a generalization of Engler et al.’s in-
consistency cross-checking framework [12, 16]. Stack,
however, supports more expressive assumptions, such as
pointer and integer operations.

Language design. Language designers may reconsider
whether it is necessary to declare certain constructs as
undefined behavior, since reducing undefined behavior in
the specification is likely to avoid unstable code. One ex-
ample is left-shifting a signed 32-bit one by 31 bits. This
is undefined behavior [24: §6.5.7], even though the result
is consistently 0x80000000 on most modern processors.
The committee for the C++ language standard is already
considering this change [33].

8 Conclusion
This paper presented the first systematic study of unstable
code, an emerging class of system defects that manifest
themselves when compilers discard code due to unde-
fined behavior. Our experience shows that unstable code
is subtle and often misunderstood by system program-
mers, that unstable code prevails in systems software, and
that many popular compilers already perform unexpected
optimizations, leading to misbehaving or vulnerable sys-
tems. We introduced a new model for reasoning about
unstable code, and developed a static checker, Stack, to
help system programmers identify unstable code. We
hope that compiler writers will also rethink optimiza-
tion strategies against unstable code. Finally, we hope
this paper encourages language designers to be careful
with using undefined behavior in the language specifi-
cation. All Stack source code is publicly available at
http://css.csail.mit.edu/stack/.

Acknowledgments
We thank Haogang Chen, Victor Costan, Li Lu, John
Regehr, Jesse Ruderman, Tom Woodfin, the anonymous
reviewers, and our shepherd, Shan Lu, for their help and
feedback. This research was supported by the DARPA
Clean-slate design of Resilient, Adaptive, Secure Hosts
(CRASH) program under contract #N66001-10-2-4089,
and by NSF award CNS-1053143.

A Correctness of approximation
As discussed in §3.2, Stack performs an optimization
if the corresponding query Q is unsatisfiable. Using an
approximate query Q′ yields a correct optimization if Q′

is weaker than Q (i.e., Q → Q′): if Q′ is unsatisfiable,
which enables the optimization, the original query Q must
also be unsatisfiable.

To prove the correctness of approximation, it suffices to
show that the approximate elimination query (5) is weaker
than the original query (3); the simplification queries (6)
and (4) are similar. Formally, given code fragment e, it
suffices to show the following:

Re(x) ∧ ∆(x)→ R′e(x) ∧
∧

d∈dom(e)

¬Ud(x). (8)

Proof. Since e’s dominators are a subset of the program,
the well-defined program assumption over dom(e) must
be weaker than ∆(x) over the entire program:

∆(x)→
∧

d∈dom(e)

(
Rd(x)→ ¬Ud(x)

)
. (9)

From the definition of dom(e), if fragment e is reach-
able, then its dominators must be reachable as well:

∀d ∈ dom(e) : Re(x)→ Rd(x). (10)

Combining (9) and (10) gives:

∆(x)→
(
Re(x)→

∧
d∈dom(e)

¬Ud(x)
)
. (11)

With Re(x), we have:

Re(x) ∧ ∆(x)→ Re(x) ∧
∧

d∈dom(e)

¬Ud(x). (12)

By definition Re(x)→ R′e(x), so (12) implies (8). �

References
[1] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei,

D. Mazières, and C. Kozyrakis. Dune: Safe user-
level access to privileged CPU features. In Proceed-
ings of the 10th Symposium on Operating Systems
Design and Implementation (OSDI), pages 335–348,
Hollywood, CA, Oct. 2012.

273

http://css.csail.mit.edu/stack/

[2] H.-J. Boehm. Threads cannot be implemented as a
library. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 261–268, Chicago,
IL, June 2005.

[3] R. Brummayer and A. Biere. Boolector: An efficient
SMT solver for bit-vectors and arrays. In Proceed-
ings of the 15th International Conference on Tools
and Algorithms for the Construction and Analysis
of Systems, pages 174–177, York, UK, Mar. 2009.

[4] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unas-
sisted and automatic generation of high-coverage
tests for complex systems programs. In Proceedings
of the 8th Symposium on Operating Systems Design
and Implementation (OSDI), San Diego, CA, Dec.
2008.

[5] G. Canet, P. Cuoq, and B. Monate. A value analysis
for C programs. In Proceedings of the 9th IEEE
International Working Conference on Source Code
Analysis and Manipulation, pages 123–124, Edmon-
ton, Canada, Sept. 2009.

[6] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich,
and M. F. Kaashoek. Linux kernel vulnerabilities:
State-of-the-art defenses and open problems. In
Proceedings of the 2nd Asia-Pacific Workshop on
Systems, Shanghai, China, July 2011.

[7] Chromium. Issue 12079010: Avoid undefined
behavior when checking for pointer wraparound,
2013. https://codereview.chromium.org/
12079010/.

[8] A. Cimatti, A. Griggio, and R. Sebastiani. Comput-
ing small unsatisfiable cores in satisfiability modulo
theories. Journal of Artificial Intelligence Research,
40:701–728, 2011.

[9] Clang. Clang Compiler User’s Man-
ual: Controlling Code Generation, 2013.
http://clang.llvm.org/docs/UsersManual.
html#controlling-code-generation.

[10] J. Corbet. Fun with NULL pointers, part 1, July
2009. http://lwn.net/Articles/342330/.

[11] W. Dietz, P. Li, J. Regehr, and V. Adve. Understand-
ing integer overflow in C/C++. In Proceedings of
the 34th International Conference on Software En-
gineering (ICSE), pages 760–770, Zurich, Switzer-
land, June 2012.

[12] I. Dillig, T. Dillig, and A. Aiken. Static error de-
tection using semantic inconsistency inference. In
Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implemen-
tation (PLDI), pages 435–445, San Diego, CA, June
2007.

[13] C. R. Dougherty and R. C. Seacord. C compil-
ers may silently discard some wraparound checks.
Vulnerability Note VU#162289, US-CERT, 2008.
http://www.kb.cert.org/vuls/id/162289.

[14] C. Ellison and G. Roşu. An executable formal se-
mantics of C with applications. In Proceedings of
the 39th ACM Symposium on Principles of Program-
ming Languages (POPL), pages 533–544, Philadel-
phia, PA, Jan. 2012.

[15] C. Ellison and G. Roşu. Defining the undefinedness
of C. Technical report, University of Illinois, Apr.
2012. http://hdl.handle.net/2142/30780.

[16] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and
B. Chelf. Bugs as deviant behavior: A general ap-
proach to inferring errors in systems code. In Pro-
ceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP), pages 57–72, Chateau
Lake Louise, Banff, Canada, Oct. 2001.

[17] GCC. Bug 30475 - assert(int+100 > int) op-
timized away, 2007. http://gcc.gnu.org/
bugzilla/show_bug.cgi?id=30475.

[18] GCC. Bug 49820 - explicit check for integer nega-
tive after abs optimized away, 2011. http://gcc.
gnu.org/bugzilla/show_bug.cgi?id=49820.

[19] GCC. Bug 53265 - warn when undefined behavior
implies smaller iteration count, 2013. http://gcc.
gnu.org/bugzilla/show_bug.cgi?id=53265.

[20] D. Gohman. The nsw story, Nov. 2011.
http://lists.cs.uiuc.edu/pipermail/
llvmdev/2011-November/045730.html.

[21] IBM. Power ISA Version 2.06 Revision B, Book I:
Power ISA User Instruction Set Architecture, July
2010.

[22] Intel. Intel 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2: Instruction Set Ref-
erence, A–Z, Jan. 2013.

[23] ISO/IEC JTC1/SC22/WG14. Rationale for Interna-
tional Standard - Programming Languages - C, Apr.
2003.

[24] ISO/IEC JTC1/SC22/WG14. ISO/IEC 9899:2011,
Programming languages - C, Dec. 2011.

[25] B. Jack. Vector rewrite attack: Exploitable NULL
pointer vulnerabilities on ARM and XScale archi-
tectures. White paper, Juniper Networks, May 2007.

[26] R. Krebbers and F. Wiedijk. Subtleties of the
ANSI/ISO C standard. Document N1639, ISO/IEC
JTC1/SC22/WG14, Sept. 2012.

[27] T. Lane. Anyone for adding -fwrapv

to our standard CFLAGS?, Dec. 2005.
http://www.postgresql.org/message-id/
1689.1134422394@sss.pgh.pa.us.

274

https://codereview.chromium.org/12079010/
https://codereview.chromium.org/12079010/
http://clang.llvm.org/docs/UsersManual.html#controlling-code-generation
http://clang.llvm.org/docs/UsersManual.html#controlling-code-generation
http://lwn.net/Articles/342330/
http://www.kb.cert.org/vuls/id/162289
http://hdl.handle.net/2142/30780
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30475
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30475
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=49820
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=49820
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=53265
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=53265
http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-November/045730.html
http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-November/045730.html
http://www.postgresql.org/message-id/1689.1134422394@sss.pgh.pa.us
http://www.postgresql.org/message-id/1689.1134422394@sss.pgh.pa.us

[28] T. Lane. Re: gcc versus division-by-zero traps,
Sept. 2009. http://www.postgresql.org/
message-id/19979.1251998812@sss.pgh.pa.
us.

[29] C. Lattner. What every C programmer
should know about undefined behavior, May
2011. http://blog.llvm.org/2011/05/
what-every-c-programmer-should-know.
html.

[30] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis & trans-
formation. In Proceedings of the 2004 Interna-
tional Symposium on Code Generation and Opti-
mization (CGO), pages 75–86, Palo Alto, CA, Mar.
2004.

[31] Linux kernel. Bug 14287 - ext4: fixpoint
divide exception at ext4_fill_super, 2009.
https://bugzilla.kernel.org/show_bug.
cgi?id=14287.

[32] D. MacKenzie, B. Elliston, and A. Demaille. Auto-
conf: Creating Automatic Configuration Scripts for
version 2.69. Free Software Foundation, Apr. 2012.

[33] W. M. Miller. C++ standard core language
defect reports and accepted issues, issue 1457:
Undefined behavior in left-shift, Feb. 2012.
http://www.open-std.org/jtc1/sc22/
wg21/docs/cwg_defects.html#1457.

[34] B. Momjian. Re: Fix for Win32 division in-
volving INT_MIN, June 2006. http://www.
postgresql.org/message-id/200606090240.
k592eUj23952@candle.pha.pa.us.

[35] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[36] D. Novillo. A propagation engine for GCC. In Pro-
ceedings of the 2005 GCC & GNU Toolchain De-
velopers’ Summit, pages 175–184, Ottawa, Canada,
June 2005.

[37] Python. Issue 17016: _sre: avoid relying on
pointer overflow, 2013. http://bugs.python.
org/issue17016.

[38] S. Ranise, C. Tinelli, and C. Barrett. QF_BV logic,
2013. http://smtlib.cs.uiowa.edu/logics/
QF_BV.smt2.

[39] J. Regehr. A guide to undefined behavior in C
and C++, July 2010. http://blog.regehr.org/
archives/213.

[40] J. Regehr. Undefined behavior consequences contest
winners, July 2012. http://blog.regehr.org/
archives/767.

[41] R. C. Seacord. Dangerous optimiza-
tions and the loss of causality, Feb. 2010.

https://www.securecoding.cert.org/
confluence/download/attachments/
40402999/Dangerous+Optimizations.pdf.

[42] R. M. Stallman and the GCC Developer Community.
Using the GNU Compiler Collection for GCC 4.8.0.
Free Software Foundation, 2013.

[43] M. Stephenson, J. Babb, and S. Amarasinghe.
Bitwidth analysis with application to silicon compi-
lation. In Proceedings of the 2000 ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 108–120, Vancouver,
Canada, June 2000.

[44] E. Teo. [PATCH] add
-fno-delete-null-pointer-checks to gcc CFLAGS,
July 2009. https://lists.ubuntu.com/
archives/kernel-team/2009-July/006609.
html.

[45] J. Tinnes. Bypassing Linux NULL pointer
dereference exploit prevention (mmap_min_addr),
June 2009. http://blog.cr0.org/2009/06/
bypassing-linux-null-pointer.html.

[46] L. Torvalds. Re: [patch] CFS scheduler, -v8,
May 2007. https://lkml.org/lkml/2007/5/
7/213.

[47] J. Tourrilhes. Invalid compilation without
-fno-strict-aliasing, Feb. 2003. https://
lkml.org/lkml/2003/2/25/270.

[48] P. Tu and D. Padua. Gated SSA-based demand-
driven symbolic analysis for parallelizing compilers.
In Proceedings of the 9th ACM International Confer-
ence on Supercomputing, pages 414–423, Barcelona,
Spain, July 1995.

[49] X. Wang, H. Chen, A. Cheung, Z. Jia, N. Zeldovich,
and M. F. Kaashoek. Undefined behavior: What
happened to my code? In Proceedings of the 3rd
Asia-Pacific Workshop on Systems, Seoul, South
Korea, July 2012.

[50] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F.
Kaashoek. Improving integer security for systems
with Kint. In Proceedings of the 10th Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI), pages 163–177, Hollywood, CA, Oct.
2012.

[51] K. Winstein and H. Balakrishnan. Mosh: An interac-
tive remote shell for mobile clients. In Proceedings
of the 2012 USENIX Annual Technical Conference,
pages 177–182, Boston, MA, June 2012.

[52] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in
HiStar. In Proceedings of the 7th Symposium on Op-
erating Systems Design and Implementation (OSDI),
pages 263–278, Seattle, WA, Nov. 2006.

275

http://www.postgresql.org/message-id/19979.1251998812@sss.pgh.pa.us
http://www.postgresql.org/message-id/19979.1251998812@sss.pgh.pa.us
http://www.postgresql.org/message-id/19979.1251998812@sss.pgh.pa.us
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
https://bugzilla.kernel.org/show_bug.cgi?id=14287
https://bugzilla.kernel.org/show_bug.cgi?id=14287
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1457
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1457
http://www.postgresql.org/message-id/200606090240.k592eUj23952@candle.pha.pa.us
http://www.postgresql.org/message-id/200606090240.k592eUj23952@candle.pha.pa.us
http://www.postgresql.org/message-id/200606090240.k592eUj23952@candle.pha.pa.us
http://bugs.python.org/issue17016
http://bugs.python.org/issue17016
http://smtlib.cs.uiowa.edu/logics/QF_BV.smt2
http://smtlib.cs.uiowa.edu/logics/QF_BV.smt2
http://blog.regehr.org/archives/213
http://blog.regehr.org/archives/213
http://blog.regehr.org/archives/767
http://blog.regehr.org/archives/767
https://www.securecoding.cert.org/confluence/download/attachments/40402999/Dangerous+Optimizations.pdf
https://www.securecoding.cert.org/confluence/download/attachments/40402999/Dangerous+Optimizations.pdf
https://www.securecoding.cert.org/confluence/download/attachments/40402999/Dangerous+Optimizations.pdf
https://lists.ubuntu.com/archives/kernel-team/2009-July/006609.html
https://lists.ubuntu.com/archives/kernel-team/2009-July/006609.html
https://lists.ubuntu.com/archives/kernel-team/2009-July/006609.html
http://blog.cr0.org/2009/06/bypassing-linux-null-pointer.html
http://blog.cr0.org/2009/06/bypassing-linux-null-pointer.html
https://lkml.org/lkml/2007/5/7/213
https://lkml.org/lkml/2007/5/7/213
https://lkml.org/lkml/2003/2/25/270
https://lkml.org/lkml/2003/2/25/270

	Introduction
	Background
	Undefined behavior
	Examples of unstable code
	An evolution of optimizations

	Model for unstable code
	Unstable code
	Approach for identifying unstable code
	Well-defined program assumption
	Eliminating unreachable code
	Simplifying unnecessary computation

	Discussion

	Design
	Overview
	Compiler frontend
	UB condition insertion
	Solver-based optimization
	Bug report generation
	Limitations

	Implementation
	Evaluation
	New bugs
	Analysis of bug reports
	Non-optimization bugs
	Urgent optimization bugs
	Time bombs
	Redundant code

	Precision
	Performance
	Prevalence of unstable code
	Completeness

	Related work
	Conclusion
	Correctness of approximation

