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Abstract
We address the compiler correctness problem for many-core sys-
tems through novel applications of fuzz testing to OpenCL com-
pilers. Focusing on two methods from prior work, random differ-
ential testing and testing via equivalence modulo inputs (EMI),
we present several strategies for random generation of determin-
istic, communicating OpenCL kernels, and an injection mecha-
nism that allows EMI testing to be applied to kernels that oth-
erwise exhibit little or no dynamically-dead code. We use these
methods to conduct a large, controlled testing campaign with re-
spect to 21 OpenCL (device, compiler) configurations, covering a
range of CPU, GPU, accelerator, FPGA and emulator implementa-
tions. Our study provides independent validation of claims in prior
work related to the effectiveness of random differential testing and
EMI testing, proposes novel methods for lifting these techniques to
the many-core setting and reveals a significant number of OpenCL
compiler bugs in commercial implementations.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent programming–parallel programming; D.2.5
[Software Engineering]: Testing and Debugging–testing tools;
D.3.4 [Programming Languages]: Processors–compilers

Keywords Compilers, OpenCL, GPUs, random testing, metamor-
phic testing, concurrency

1. Introduction
Open Computing Language (OpenCL) [10] is an industry standard
model for programming many-core computer systems in which
parallel processing capabilities are offered by CPUs, GPUs, FPGAs
and other accelerators. OpenCL offers a kernel-based programming
model where the developer factors out data-parallel parts of an
application into kernel functions. Multiple instances of a kernel
function execute in parallel across the processing elements of a
many-core device.

A key aim of OpenCL is portability. If an OpenCL kernel con-
forms to the standard (exhibiting no undefined behaviours), and
does not depend on implementation-defined behaviour, then al-
though the kernel may behave nondeterministically (due to con-
currency) it should yield a result drawn from a well-defined,
implementation-independent set of permitted results, regardless
of the device on which it executes.
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One of the principal challenges for an OpenCL implementer in
achieving this portability guarantee for a given device is the con-
struction of a correct compiler for OpenCL C, the C-like program-
ming language in which kernel functions are written. To be confor-
mant, the compiler must support the full range of OpenCL language
constructs, which includes a three-layer memory hierarchy, a rich
set of vector data types and operations, read-modify-write atomics,
and barrier synchronization. To be practical, the compiler must per-
form aggressive, device-specific optimizations since performance
is the sole reason for adoption of OpenCL. OpenCL compiler re-
liability is especially crucial because, by default, compilation is
performed online. OpenCL-accelerated applications are written in
a device-agnostic manner and the kernels used by an application
are compiled at runtime by the drivers of available devices. Online
compilation with respect to devices that are unknown during devel-
opment means that compiler bugs cannot easily be anticipated and
circumvented.

In this paper, we investigate many-core compiler fuzzing (i.e.
testing with respect to randomly generated inputs) in the context of
OpenCL. We focus on two recent successful techniques for finding
bugs in C compilers: random1 differential testing [20] and testing
via equivalence modulo inputs [12] (henceforth referred to as EMI
testing). Our work makes four main contributions:

1. We provide a large study independently validating claims made
in prior work [12, 20] about the effectiveness of random differ-
ential testing and EMI testing, in a new application domain.

2. We lift random differential testing to the many-core setting via
three novel methods for generating deterministic, communicat-
ing, feature-rich OpenCL kernels.

3. We propose and evaluate injection of dead-by-construction
code to enable EMI testing in the context of OpenCL.

4. Through a testing campaign using 21 (device, compiler) config-
urations we have identified and reported more than 50 OpenCL
compiler bugs, most in commercial implementations.

Online material We provide our tools, test programs, full result
data sets, and details of the bugs we found, online.2

2. Overview of Methods and Results
We start with a bird’s-eye view of our contribution. Background on
OpenCL and compiler fuzzing and full details of our methods and
results follow in the subsequent sections.

2.1 The Devices and Compilers We Tested
We conducted testing with respect to 21 distinct OpenCL con-
figurations, summarised in Table 1. A configuration refers to an

1 Throughout the paper we use random to mean pseudo-random.
2 http://multicore.doc.ic.ac.uk/tools/CLsmith/PLDI15
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Table 1. The OpenCL implementations and devices we have tested
Conf. SDK Device Driver/compiler OpenCL Operating system Device type Above threshold?

1 NVIDIA 6.5.19 NVIDIA GeForce GTX Titan 343.22 1.1 Ubuntu 14.04.1 LTS GPU X
2 NVIDIA 6.5.19 NVIDIA GeForce GTX 770 343.22 1.1 Ubuntu 14.04.1 LTS GPU X
3 NVIDIA 7.0.28 NVIDIA Tesla M2050 346.47 1.1 RHEL Server 6.5 GPU X
4 NVIDIA 7.0.28 NVIDIA Tesla K40c 346.47 1.1 RHEL Server 6.5 GPU X
5 AMD 2.9-1 AMD Radeon HD7970 GHz edition Catalyst 14.9 1.2 Windows 7 Enterprise GPU ×
6 AMD 2.9-1 ATI Radeon HD 6570 650MHz Catalyst 14.9 1.2 Windows 7 Enterprise GPU ×
7 Intel 4.6 Intel HD Graphics 4600 10.18.10.3960 1.2 Windows 7 Enterprise GPU ×
8 Intel 4.6 Intel HD Graphics 4000 10.18.10.3412 1.2 Windows 8.1 Pro GPU ×
9 Anon. SDK 1 Anon. device 1 Anon. driver 1c 1.1 Linux (anon. version) GPU X

10 Anon. SDK 1 Anon. device 1 Anon. driver 1b 1.1 Linux (anon. version) GPU ×
11 Anon. SDK 1 Anon. device 1 Anon. driver 1a 1.1 Linux (anon. version) GPU ×
12 Intel 4.6 Intel Core i7-4770 @ 3.40 GHz 4.6.0.92 2.0 Windows 7 Enterprise CPU X
13 Intel 4.6 Intel Core i7-4770 @ 3.40 GHz 4.2.0.76 1.2 Windows 7 Enterprise CPU X
14 Intel 4.6 Intel Core i5-3317U @ 1.70 GHz 3.0.1.10878 1.2 Windows 8.1 Pro CPU X
15 Intel XE 2013 R20 Intel Xeon X5650 @ 2.67GHz 1.2 build 56860 1.2 RHEL Server 6.5 CPU X
16 AMD 2.9-1 Intel Xeon E5-2609 v2 @ 2.50GHz Catalyst 14.9 1.2 Windows 7 Enterprise CPU ×
17 Anon. SDK 2 Anon. device 2 Anon. driver 2 1.1 Linux (anon. verson) CPU ×
18 Intel XE 2013 R2 Intel Xeon Phi 5889-14 1.2 RHEL Server 6.5 Accelerator ×
19 Intel 4.6 Oclgrind v14.5 LLVM 3.2, SPIR 1.2 1.2 Ubuntu 14.04 Emulator X
20 Altera 14.0 Altera PCIe-385N D5 (Emulated) aoc 14.0 build 200 1.0 CentOS 6.5 Emulator ×
21 Altera 14.0 Altera PCIe-385N D5 aoc 14.0 build 200 1.0 CentOS 6.5 FPGA ×

(OpenCL-capable device, OpenCL device driver) pair, since the
OpenCL C compiler for a given device is embedded in the driver
software for the device. The table also shows the OpenCL version
that is supported, and the operating system used for testing.

GPUs Configurations 1–11 cover nine distinct GPU devices,
from NVIDIA (1–4), AMD (5–6) and Intel (7–8), and from a ven-
dors we anonymise due to confidentiality agreements (9–11; these
comprise a single device tested with three different driver versions).

CPUs The devices for configurations 12–16 are multi-core Intel
CPUs; 12–15 use Intel drivers and 16 uses AMD drivers (so that
AMD’s OpenCL compiler is under test). The device for configura-
tion 17 is a multi-core CPU from a vendor that we again anonymise.

Misc The remaining configurations consist of the Intel Xeon
Phi co-processor (18), Oclgrind3 [15], an open source platform-
independent emulator (19), an emulator for an Altera FPGA (20),
and the associated FPGA device (21).

This represents the hardware that was available to us at Imperial
College, and spans a wide range of OpenCL-capable devices.

2.2 Lifting Compiler Fuzzing to OpenCL
Many-core random differential testing To lift random differen-
tial testing to the many-core setting we have built a tool, CLsmith,
for generation of random OpenCL kernels, based on the Csmith C
program generator [20]. CLsmith includes six modes. BASIC and
VECTOR mode yield “embarrassingly parallel” OpenCL kernels in
which threads do not communicate; VECTOR mode exercises the
rich set of vector data types and operations available in OpenCL.
BARRIER, ATOMIC SECTION and ATOMIC REDUCTION modes use
novel strategies for enabling deterministic inter-thread communi-
cation. The ALL mode encompasses all of the above. The design of
CLsmith and details of these modes is provided in §4.

Many-core EMI testing EMI testing involves fuzzing over state-
ments in a program that are determined, via code-coverage analy-
sis, to be dynamically unreachable for a given input. Finding such
dynamically-dead code in OpenCL applications is hindered by (a)
the lack of available code-coverage tools for OpenCL, and (b) the
fact that dynamically-dead code is rare in practical OpenCL ker-
nels: a recent study of 605 kernels shows that only a handful exhibit
input-dependent behaviour [2], a necessary (but not sufficient) con-
dition for dynamically-dead code. Problem (a) could be overcome

3 https://github.com/jrprice/Oclgrind

with non-trivial engineering effort (e.g. we could extend Oclgrind
with code-coverage capabilities), but problem (b) is fundamental.
To circumvent both problems we investigate injecting dead-by-
construction code into OpenCL kernels (§5).

2.3 Experimental Method
Classifying configurations We assessed each configuration using
a set of 600 test kernels randomly generated by CLsmith, with
respect to a reliability threshold. We detail this threshold in full in
§7.1, but in summary: for a configuration to lie above the threshold
we required that no more than 25% of the 600 tests should fail
(either with a build failure, runtime crash or wrong code result)
when executed on the configuration. The classification for each
configuration is given by the final column of Table 1.

EMI testing using standard OpenCL benchmarks The configu-
rations below our reliability threshold suffer from defects typically
related to the use of complex structs (see §7.1 for a full discussion).
As structs are fundamental to the CLsmith approach (see §4.1) it
was clear we would not gain deeper insights into these configura-
tions through more intensive CLsmith-based testing. However, our
assumption was that these configurations should still be capable of
correctly compiling standard OpenCL applications and variations
thereof. We thus applied EMI testing with injection of dead-by-
construction code to all configurations using 10 benchmarks from
the widely-used Parboil [18] and Rodinia [3] suites (§7.2).

Intensive CLsmith-based testing Focusing on the configurations
lying above the reliability threshold, we conducted CLsmith-based
testing at a larger scale (§7.3), testing large sets of random kernels
generated by each of the six modes provided by CLsmith. The
purpose of this experiment was (1) to validate prior work [20]
by assessing the effectiveness of random differential testing in a
new domain, and (2) to evaluate the effectiveness, in terms of bug-
finding ability, of our CLsmith modes.

Intensive EMI testing with random programs We also per-
formed large-scale EMI testing on the configurations lying above
the reliability threshold, using CLsmith-generated kernels with in-
jected dead-by-construction code (§7.4). The purpose of this ex-
periment was (1) to validate in a new domain the claim of prior
work [12] that mutating dynamically-dead code is an effective
mechanism for finding compiler bugs, and (2) to compare the ef-
fectiveness of the EMI testing with random differential testing in
terms of bug-finding ability.

66



2.4 Summary of Findings
Many OpenCL implementations are not robust Many of the con-
figurations we tested exhibit basic compiler bugs (see Figure 1),
miscompilations caused machine crashes for some configurations,
and we found that some configurations are incapable of running
standard OpenCL benchmarks. These issues undermine the porta-
bility aim of the OpenCL effort.

Fuzz testing is effective in the OpenCL domain Both random
differential and EMI testing revealed significant numbers of defects
in the OpenCL implementations we tested. In §6 we show and
discuss a selection of these bugs.

We did not find communication-related bugs Our methods for
generating deterministic, communicating kernels led to the discov-
ery of compiler bugs that only manifest in the presence of barrier
synchronization (see e.g. Figures 1(f), 1(d), 2(c) and 2(d)). How-
ever, none of these bugs were inherently communication-related.
We did not find bug-inducing tests that relied on atomic operations.

EMI testing with existing code can be challenging We wasted
significant effort trying to reduce kernels from two standard bench-
marks (Parboil spmv and Rodinia myocyte) until we found that
result differences were arising due to previously unidentified data
races. This emphasizes the point that compiler fuzzing requires de-
terministic, well-defined programs; real-world examples often do
not have this property. We reported these bugs to the Parboil and
Rodinia developers, and both have been confirmed.

3. Background
3.1 The OpenCL Programming Model
OpenCL [10] allows an application running on a host to offload
computation to one or more parallel devices. Offloading is achieved
by expressing the computation to be accelerated as a kernel: a
function, parameterised by a thread identifier, that will be executed
simultaneously across the processing elements of a device. Kernels
are written in OpenCL C, a restricted version of C99 equipped
with a variety of extensions, some of which are summarised below.
At runtime, the host application uses an API to identify the set of
available devices and compiles a given kernel for a selected device.
Thus compilation occurs online: the OpenCL driver for a device
includes an OpenCL C compiler for that device.

Threads and groups An OpenCL kernel is executed by an
NDRange (N -Dimensional range) of work-items, which we hence-
forth refer to as threads for brevity. The standard requires a min-
imum of three dimensions to be supported, and most devices do
not support 4D or higher-dimensional kernels in practice, so we
assume hereafter that all kernels are 3D (1D and 2D kernels can be
viewed as degenerate 3D kernels). We use ~v to denote a 3D vector
(vx, vy, vz). Letting ~N denote the kernel dimensions, each thread
has a distinct 3D global id ~t (0 ≤ ti < Ni, i ∈ {x, y, z}). The
threads are organised into a 3D grid of work-groups (henceforth
referred to as groups for brevity) with dimension ~W , where ~W
divides ~N component-wise. A thread may access the id ~g of the
group to which it belongs (0 ≤ gi < Ni/Wi, i ∈ {x, y, z}), and
a local id ~l within its group (0 ≤ li < Wi, i ∈ {x, y, z}). Global,
group and local ids are related: ~t = ~g · ~W +~l.

The global id ~t can be linearized to give a global linear id
tlinear = (tz · Ny + ty) · Nx + tx. Linear group and local ids,
glinear and llinear , are defined similarly. The linear size of a group
is defined as Wlinear = Wx ·Wy ·Wz , and the linear total number
of threads as Nlinear = Nx ·Ny ·Nz .

Memory spaces Data in an OpenCL kernel resides in one of four
memory spaces: global and constant memory are shared among

all threads, with constant memory being read-only; each group has
access to a separate local memory shared between all threads in the
group; every thread has a separate private memory. The global,
constant, local and private qualifiers are used to specify
memory spaces on data, with private being the default.

When we say that a location is in shared memory we mean that
the location is either in local or global memory.

Vector types and operators OpenCL provides a rich set of vector
types and operations on integer data. Signed and unsigned char,
short, int and long vectors can be declared with lengths 2,
4, 8 and 16.4 The C arithmetic and logical operations all apply
component-wise to vectors. A rich set of additional vector oper-
ations is also provided. We discuss two built-in vector operations,
clamp and rotate, that we shall refer to later. Applied to scalar
integers x, min , max , with min ≤ max , clamp(x,min,max)
returns min if x < min , max if x > max , and x otherwise. Ap-
plied to scalar integers x and y, rotate(x,y) returns the integer
obtained by left-shifting the bits of x by y places; bits shifted off
the left of x are shifted back in from the right. Both operations are
lifted component-wise to vectors.

Barriers, atomic operations and data races OpenCL 1.x offers
no mechanism for synchronization between threads in different
groups during the execution of a kernel. Threads within a work
group can synchronize by executing a collective barrier operation:
on reaching a barrier a thread must wait until all threads in the
group arrive at the same syntactic barrier, after which the group
can proceed beyond the barrier. A barrier accepts a fence argument
specifying the consistency guarantee that should be provided on
leaving the barrier: consistency over global, local, or both global
and local memory spaces can be requested.

Atomic read-modify-write operations also allow intra-group
communication. These include exchange and compare-and-exchange,
plus a number of arithmetic and bitwise operations.

A data race occurs between two distinct threads that access a
common memory location if at least one thread modifies the loca-
tion, and either: the threads are in different groups, or the threads
are in the same group, at least one of the accesses is non-atomic,
and the accesses are not separated by a barrier synchronization.
Barrier divergence occurs if two threads in the same group arrive
at distinct barriers, or arrive at a barrier inside a loop nest having
executed different numbers of iterations of the enclosing loops.

Undefined and implementation-defined behaviour A large set of
undefined behaviours are inherited in OpenCL from C99 [9]. Ad-
ditionally, data races and barrier divergence are considered unde-
fined behaviours, and some of the vector operations specify new
undefined behaviours. For example, clamp(x,min,max) yields
undefined behaviour if some component of min is larger than
the corresponding component of max . There are fewer sources
of implementation-defined behaviour: in particular, the widths of
primitive data types are fixed and a two’s complement represen-
tation is mandated for signed integers, so that, for example, int
denotes a 32-bit two’s complement signed integer. A two’s com-
plement representation means that bit-level operations, such as the
rotate function discussed above, are well-defined on signed data.

Notably, whether irreducible control flow [1] is allowed in
OpenCL is implementation-defined. This means that kernels that
exhibit irreducible control flow are not portable.

3.2 Compiler Fuzzing
Compiler testing is hindered by the oracle problem: determining
whether a compiler correctly processes an input program requires
knowledge of how the input program should behave. The methods

4 OpenCL 1.1 and higher also support vectors of length 3.
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we study here, random differential testing and EMI testing, use ma-
jority voting to circumvent the oracle problem by exploiting the fact
that a deterministic program should always yield a unique, well-
defined result. The following definition captures this requirement
(it is intended as a guideline and is necessarily imprecise because it
does not refer to a specific programming language):

DEFINITION 1 (Program with deterministic output). Program P
produces deterministic output for input I if, when executed on I , P
exhibits no undefined or implementation-defined behaviour, termi-
nates, and prints a string s that is uniquely determined by I .

Random differential testing Csmith [20] represents the current
state-of-the-art using random differential testing [13, 17]. Csmith
generates random C programs that take no input and are guaranteed
to produce deterministic output (Definition 1), except that Csmith
can be configured to allow implementation-defined behaviour. The
oracle problem is pragmatically circumvented by comparing the re-
sults obtained for a program using multiple compilers, or the same
compiler configured with different optimization settings, assuming
that the majority result (if one exists) is the correct one. Deviations
from the majority likely indicate miscompilations which can be in-
vestigated to identify compiler bugs.

Equivalence modulo inputs testing A limitation of random dif-
ferential testing is that it requires multiple compilers, or at least
multiple optimization settings for a single compiler. The OpenCL
standard exposes a single such setting: optimizations can be on
(default) or off. Instead of avoiding the oracle problem through
multiple compilers, equivalence modulo inputs (EMI testing) [12]
employs metamorphic testing [4], whereby defects are identified
by observing that a system behaves differently on test inputs that
should guarantee identical outputs. In particular, one compiler is
tested against multiple programs that should all produce the same
deterministic output for a particular input. Deviations between pro-
grams compiled with a single compiler indicate miscompilations.

Suppose a program P produces deterministic output (Defini-
tion 1) on input I and further that P exhibits no internal nonde-
terminism when executed on I . Suppose a (possibly compound)
statement s is found to be unreachable when P is executed on I;
s is said to be I-dead. Let Q = P [s′/s] be the program obtained
by replacing s with a different (possibly compound, and possibly
empty) statement s′. If Q type-checks then clearly Q should pro-
duce the same deterministic output as P when executed on I; P
and Q are said to be equivalent modulo the input I .

This leads to the following strategy for compiler testing, which
we refer to as EMI testing: given a program P with a test input
I , profile P on I to identify I-dead statements. Then, for some
N > 0, derive N variants of P—Q1, . . . , QN say—by sub-
stituting I-dead statements with alternative statements. Compile
P,Q1, . . . , QN and execute each program on I; result mismatches
indicate miscompilations. The Orion tool implements EMI testing
and has uncovered numerous bugs in GCC and LLVM using regres-
sion tests and Csmith-generated programs as source programs [12].
The authors argue that the method is effective because it induces
subtle changes to the control flow graph of a program that can
trip up incorrectly implemented optimizations or incompatible op-
timization passes.

4. Random Differential Testing for OpenCL
We have built a tool, CLsmith, which builds on Csmith [20] to gen-
erate random OpenCL kernels that produce deterministic output.
We first explain how the Csmith approach can be lifted to OpenCL
to yield “embarrassingly parallel” kernels where threads do not
communicate (§4.1). We then discuss the design of three strategies
for enabling deterministic communication between threads (§4.2).

4.1 Embarrassingly Parallel Random Kernels
BASIC mode: lifting Csmith to OpenCL In BASIC mode our CL-
smith tool generates an OpenCL kernel whose body is an adapted
Csmith-generated program. Every thread executes this program to
compute a numeric result. These computations are independent,
and each thread writes its result to index tlinear of a designated
global memory array, out. The final values of out are subse-
quently printed as a comma-separated list.

Because OpenCL 1.x does not support variables declared at
global program scope we had to modify Csmith to declare a struct
with one field for each would-be-global variable, initialize an in-
stance of this struct on kernel entry and pass the struct by refer-
ence to every function. A consequence of this globals struct is that
CLsmith-generated programs depend critically on accurate com-
pilation of structs, and are thus biased towards identifying struct-
related miscompilations. As we discuss in §7.1 and illustrate in Fig-
ure 1, we found fundamental problems related to the compilation
of structs in several of the configurations we tested (Table 1).

When leveraging Csmith, CLsmith disables bit-fields which are
illegal in OpenCL. We also ascertained that programs generated by
Csmith have reducible control flow graphs; whether irreducibility
is supported is implementation-defined in OpenCL (see §3.1).

VECTOR mode: supporting OpenCL vectors and built-ins CL-
smith extends Csmith with the capability of generating variables
and expressions with vector types, exercising the rich set of vec-
tor operations available in OpenCL (see §3.1). This extension was
non-trivial to implement because the standard Csmith tool exploits
the fact that the C type system allows arbitrary coercions between
integer data types. This is not the case for OpenCL vectors, for
instance it is not possible to cast an int4 (4D int vector) to a
short4 or even a uint4. Thus we had to provide support for
type-sensitive vector expression generation. To avoid undefined be-
haviours arising from vector computations we designed a set of
“safe math” vector macros, following the approach used by Csmith
for scalar operations [20]. For instance, instead of directly issuing
a clamp operation, CLsmith instead generates an invocation of
our safe_clamp macro, where safe_clamp(x,min,max)
expands to (min > max ? x : clamp(x,min,max)).

Randomizing grid and group dimensions To test a diverse range
of thread arrangements, CLsmith randomly selects a total thread
count in the range [100, 10000) and then chooses random divisors
of this thread count to select appropriate values for ~N and ~W (see
§3.1). Kernels with dimension 1 and 2 are in effect generated if
size 1 is selected for one or more dimensions. The maximum work-
group size supported by all the configurations of Table 1 is 256,
thus we constrained ~W such that Wx ·Wy ·Wz ≤ 256.

4.2 Deterministic, Communicating Random Kernels
We present three methods for generating random OpenCL kernels
that exhibit deterministic intra-group communication using barri-
ers and atomic operations. We restrict to intra-group communica-
tion because the OpenCL 1.x specifications provide no inter-group
memory consistency guarantees [11, p. 29].

BARRIER mode In this mode, threads in a group communicate
via shared arrays, synchronizing using barriers to avoid data races.
A kernel is equipped with a 2D array permutations of size d×
Wlinear , for some small d, such that permutations[i] is a ran-
domly selected permutation of the set {0, . . . ,Wlinear−1} for each
0 ≤ i < d; we use d = 10 in practice. Each group is also equipped
with a shared memory array A of type uint and length Wlinear ,
initialized with a uniform value (we use the value 1 in practice).
The array is allocated either in local or global memory; the choice
is random. Each thread has a private variable A_offset, of type
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uint, initialized to permutations[rnd][llinear], where rnd
is a literal value selected randomly during program generation, with
0 ≤ rnd < d (rnd is uniform across threads). Thus A_offset
initially provides each thread with a distinct offset into A. At ran-
dom points in the kernel the threads synchronize using a barrier and
then reset A_offset using a randomly chosen permutation. The
generated code for the ith such synchronization point to be gener-
ated has the form:

barrier(FENCE);
A_offset = permutations[rnd i][llinear];

where rnd i is a literal value selected randomly during program
generation, with 0 ≤ rnd i < d, and FENCE is a global or
local memory fence depending on the memory space in which A
is allocated. The index rnd i is uniform across threads so that every
thread accesses the same permutation. This randomly re-distributes
ownership of elements of A among the threads.

This allows CLsmith to randomly emit reads from and writes to
A[A_offset] in the kernel; the use of a barrier before ownership
re-distribution ensures these accesses will not lead to data races.
Because only barriers are used for synchronization, race-freedom
ensures that this communication mechanism yields deterministic
results (see [6] for a proof of this general result).

ATOMIC SECTION mode In this mode, CLsmith generates
atomic sections; the ith generated section has the following form:

if(atomic_inc(c) == rnd i) {
/* statements */
atomic_add(s, hash);

}

where rnd i is a literal value, uniform across threads, chosen ran-
domly during program generation, c points to a volatile uint
counter in shared memory, and s points to a volatile uint spe-
cial value associated with the counter, also in shared memory. Each
group has a separate copy of c and s so that there is no interaction
between groups. The idea is that only the rnd i-th thread to incre-
ment c enters the conditional; which thread this is (if any) depends
on the order in which threads are scheduled. If a thread does enter
the conditional the thread executes statements and then incre-
ments s by a hash of the results of this computation (indicated by
hash). The hash is computed by summing the values of all vari-
ables declared immediately inside the atomic section. At the end of
kernel execution the thread with llinear = 0 incorporates the value
of special value s into its final result, on behalf of the group.

To ensure determinism, assignments in statements are re-
stricted to only modify data declared inside the atomic section. This
ensures that the local state of the thread that executes an atomic sec-
tion is the same on exit from the section as it was on entry to the
section. Similarly, an atomic section should not contain jumps (via
return, break, continue and goto) that allow execution to
leave the section; these would cause the thread that executed the
section to deviate from the behaviour of other threads by follow-
ing a different control path. As well as leading to nondeterministic
result differences between threads, this issue could lead to barrier
divergence if atomic sections are combined with other modes that
issue barriers. To aid in ensuring these guarantees, atomic sections
are restricted so that they do not issue function calls, though in prin-
ciple they could issue calls to functions that have been constructed
to satisfy the guarantees required by atomic sections. Our hypothe-
sis was that atomic sections might provoke compiler bugs that break
the determinism guarantee CLsmith attempts to enforce.

In practice each group is equipped with arrays containing a
randomly chosen number of counters and special values (between
1 and 99 in practice). Each atomic section uses a randomly selected
(counter, special value) pair.

ATOMIC REDUCTION mode In this mode, threads within a
group randomly perform a reduction into a designated volatile
shared memory location, r, of type uint, using one of the com-
mutative and associative arithmetic and bitwise atomic operations
provided by OpenCL: add, min, max, or, and and xor. After
the reduction the threads synchronize via a barrier, the thread with
llinear = 0 adds the result of the reduction to a running total, and
the threads synchronize again so that the location r can be re-used
in further reductions without inducing data races. If p is a pointer
to the location r then the form of the ith atomic reduction to be
generated is:

atomic_opi(p, expr i);
barrier(FENCE);
if(llinear == 0) { total += *p; }
barrier(FENCE);

Here opi is one of the above operators and expr i is a ran-
domly generated expression. Because each of the atomic operations
we consider are commutative and associative, the order in which
threads participate in the reduction does not affect the result, thus
determinism is guaranteed.

Avoiding barrier divergence The BARRIER and ATOMIC REDUC-
TION modes both generate barrier synchronization operations. To
avoid barrier divergence (see §3.1) it is essential that barriers do
not appear in a context where threads in the same group may follow
divergent control flow paths. We ensure this by universally prohibit-
ing CLsmith from generating thread global or local ids, ti, li, for
i ∈ {x, y, z, linear} in expressions, and by initializing the array A
uniformly with a single value. These restrictions make it impossi-
ble for the identity of a thread to influence the control flow taken
by the thread during execution.

5. EMI Testing for OpenCL
As discussed in §2.2, direct EMI testing (as per [12]) for OpenCL
is hindered principally by the scarcity of dynamically-dead code
in practical kernels. We overcome this by injecting dead-by-
construction code into kernels. We equip a kernel with an addi-
tional array parameter, dead of length d (for some small d) and
randomly insert into the kernel a number of EMI blocks, where the
ith EMI block to be generated has the following form:

if(dead[rnd i,1] < dead[rnd i,2]) {
/* statements */

}

where rnd i,1 and rnd i,2 are literal values randomly selected dur-
ing program generation such that 0 ≤ rnd i,2 < rnd i,1 < d. The
OpenCL compiler knows nothing about the runtime values of ele-
ments of dead. We also modify the host application to initialize
dead so that dead[j ] = j (0 ≤ j < d). This means that, by
construction, the statements inside the EMI block are dynamically
unreachable. If the original kernel produces deterministic output,
any variation of the kernel injected with an EMI block should pro-
duce the same deterministic output.

Dead-by-construction code in CLsmith We extended CLsmith
with an option to equip the generated kernel with a dead array
and a number of randomly generated and randomly placed EMI
blocks. Variants of the kernel are then produced by pruning the EMI
blocks according to a set of configurable probabilities. This strategy
is the same as the one employed by the original EMI work [12].
We consider each EMI block as an abstract syntax tree (AST),
such that non-compound statements (e.g. assignment and break
statements) are leaf nodes and compound statements (if and for
statements) are branch nodes. At each node a series of prunings
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struct S { char a; short b; };

kernel void k(global ulong *out) {
struct S s = { 1, 1 }; out[tlinear] = s.a + s.b;

}
(a) Configs. 5+, 6+, 16+ yield result 1 (expected: 2)

typedef struct {
short a; int b; volatile char c;
int d; int e; short f[10];

} S;

kernel void k(global ulong *out) {
S s; S* p = &s;
S t = {0,0,0,0,0, {0,0,0,0,0,0,0,1,0,0}};
s = t; out[tlinear] = p->f[7];

}
(b) Configs. 10−, 11− yield result 0 (expected: 1)

kernel void k() {
struct S { int4 x; };
struct S s = { (int4)((int2)(1, 1), 1, 1) };

}
(c) Configs. 20±, 21± yield internal errors when vectors appear in structs

typedef struct { int x; int y; } S;
void f(S *p) { p->x = 2; }

kernel void k(global ulong *out) {
S s = { 1, 1 }; barrier();
f(&s); out[tlinear] = s.x + s.y;

}
(d) Configs. 17± yield result 2 (expected result: 3)

kernel void k(global int *p) {
for(int i=0; i < 197; i++) if(*p) while(1) { }

}

(e) Configs. 8±, 7± enter an infinite loop during compilation of this kernel

typedef struct { int a; int *b; ulong c[9][9][3]; } S;

kernel void k(global ulong *out) {
S s; S* p = &s; S t = { 0, &p->a, { 0 } }; s = t;
barrier();
out[tlinear] = p->c[0][0][1];

}
(f) Config. 18+ takes more than 20s to compile this kernel

Figure 1. Kernels illustrating compiler bugs for the configurations
that lie below the reliability threshold used for our study

are considered. We reproduce two pruning strategies from [12],
leaf and compound, and propose a further strategy, lift. The leaf
pruning deletes a leaf node with probability pleaf ; the compound
pruning deletes a branch node with probability pcompound .

Our new lift pruning has associated probability plift , and pro-
motes the children of a branch node to become children of the par-
ent of the branch node, after which the branch node is removed.
Lifting transforms a conditional with then block S and else block
T into the sequence S;T , and a for loop with initializer S and body
T into the sequence S;T ′, where T ′ is identical to T except that
outermost break and continue statements are removed (this
ensures that the code is syntactically valid after lifting).

Because compound and lift are not independent (they can both
remove branch nodes), and because compound is applied before
lift, the actual probability of lifting will be (1 − pcompound) ·
plift , therefore we perform lifting with the adjusted probabil-
ity p′lift = plift/(1 − pcompound); this necessitates enforcing
pcompound + plift ≤ 1 to ensure p′lift ≤ 1.

Injecting into real-world kernels To inject EMI blocks into ex-
isting OpenCL kernels we use CLsmith to generate a selection of
EMI block variants using the generation and pruning strategies de-
scribed above. To place such a block into an existing kernel we need
to account for free variables that are used inside the EMI block. The

free variables can either be defined at the start of the block, or can
be renamed via a substitution to take the names of variables in the
original kernel (using the #define construct). Our hypothesis was
that using substitutions would make EMI blocks more effective at
provoking compiler bugs: they mean that computations described
inside and outside the block operate on common data, giving the
compiler the opportunity to optimize (possibly erroneously) across
the block boundary. We evaluate this hypothesis in §7.2.

6. Example Bugs
We present details of various compiler bugs we discovered through
our study. A selection of bugs related to the configurations that
fell below and above our reliability threshold are summarised in
Figures 1 and 2, respectively, and discussed below. For brevity,
we write barrier() for a barrier equipped with a local memory
fence, omitting the CLK_LOCAL_MEM_FENCE flag.

OpenCL kernels are compiled with optimizations enabled by
default, and a -cl-opt-disable flag may be passed to turn
optimizations off. Throughout the discussion, if i is a configuration
id we use i+ and i− to denote the configuration with optimizations
enabled and disabled, respectively, and i± to denote both cases.

Front-end issues An early version of CLsmith generated unin-
tentionally ambiguous vector expressions. One example was the
expression (int2)(1,2).y, the intent of which was to access
the y component of a 2D vector. Some compilers accepted this
expression, interpreting the expression as ((int2)(1,2)).y
(which is what we intended, and what CLsmith will now pro-
duce); other compilers rejected the expression, interpreting it as
(int2)((1,2).y) which would clearly be wrong. We do not
find the description of operator precedence rules in the OpenCL
specification clear in this situation. We find it interesting that our
accidental generation of ambiguous, possibly erroneous, expres-
sions led to the identification of compiler front-end mismatches;
this suggests that it might be interesting to investigate fuzzing tech-
niques that specifically target grey areas in a language specification.

Many tests initially failed on the Altera configurations (20
and 21) due to the front-end rejecting logical operations on vec-
tors; conformant OpenCL implementations are required to support
these operations. To work around this, to enable deeper testing, we
adapted CLsmith to wrap vector logical operations in macros, pro-
vided Altera-specific implementations of these macros to avoid the
bug, and repeated initial testing.

Machine crashes We had difficulty testing with our AMD and
Intel GPUs (configurations 5, 6, 7, 8) because kernel execution
would occasionally, and unpredictably, crash the OS of the host
machine. We were able to mitigate this to some extent (but not
entirely) for the AMD GPUs by ensuring that the GPU under test
was not being used simultaneously for graphics processing. This
was not possible for the Intel GPUs: we found that disabling their
use for graphics processing also made them inaccessible via the
OpenCL API. Unpredictable machine crashes make batch testing,
and thus intensive fuzz testing, infeasible. It is also interesting and
potentially worrying that erroneously-compiled OpenCL kernels
can bring down a system.

Problems with structs The initial testing revealed severe bugs
related to struct compilation for several configurations.

The AMD GPU and CPU configurations (5, 6, 16) produce
wrong results (regardless of thread count) with optimizations for
the trivial kernel of Figure 1(a); more generally these configura-
tions appear to miscompile any struct that starts with char fol-
lowed by a larger member. We reported this, and a similar bug re-
lated to struct padding, to AMD in May 2014 and both were con-
firmed. The padding bug, but not the bug of Figure 1(a), was fixed
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struct S { short c; long d; };
union U { uint a; struct S b; };
struct T { union U u[1]; ulong x; ulong y; };

kernel void k(global ulong *out, global int *in) {
struct T c;
struct T t = { {{1}}, in[tx], in[ty] };
c = t;
ulong total = 0;
for(int i = 0; i < 1; i++) total += c.u[i].a;
out[tlinear] = total;

}
(a) Configs. 1−, 2−, 3−, 4− yield 0xffff0001 due to incorrect union initial-
ization (expected: 1)

kernel void k(global ulong *out) {
out[tlinear] = rotate((uint2)(1, 1), (uint2)(0, 0)).x;

}
(b) Config. 14± yields result 0xffffffff (expected: 1)

int f();
void k(int *p) { barrier(); *p = f(); }
void h(int *p) { k(p); }
int f() { barrier(); return 1; }

kernel void k(global ulong *out) {
int x = 0; h(&x); out[tlinear] = x;

}
(c) Configs. 12−, 13− yield result [1,0] when executed by two threads
in the same group (expected result: [1,1]). Configs. 14−,15− crash with a
segmentation fault.

typedef struct { int a; int * volatile * b; int c; } S;

void f(S *s) {
for (s->a = 0; (s->a > 0); s->a = 0) {
int x = 1; int *p = &s->c; // loop body is
barrier(); // unreachable
// complex expression over x, p and s (not shown)

} }

kernel void k(global ulong *out) {
S s = { 1, 0, 0 }; f(&s); out[tlinear] = s.a;

}
(d) Configs. 14−, 15− yield result [0,1] when executed by two threads in the
same group (expected result: [0,0])

void f(int *p) {
if((((((*p - gx) != 1) >> *p) < 2) >= *p)) { *p = 1; }

}

kernel void k(global ulong *out) {
int x = 0; f(&x); out[tlinear] = x;

}
(e) Config. 9+ yields result 0 (expected: 1)

kernel void k(global ulong *out) {
short x = 1; uint y;
for(y = -1; y >= 1; ++y) { if(x , 1) break; }
out[tlinear] = y;

}
(f) Config. 19± yields result 0 (expected: 0xffffffff)

Figure 2. Kernels illustrating compiler bugs for the configurations
that lie above the reliability threshold used for our study

in the Catalyst 14.9 drivers we used for testing. However, the bug
of Figure 1(a) has since been fixed in the Catalyst 14.12 drivers.

Two of the anonymized GPU configurations (10, 11) miscom-
pile the kernel of Figure 1(b) when optimizations are disabled and,
curiously, only if Nx = 1. This shows the value of randomizing
group dimensions. We reported this bug to the vendor who con-
firmed they can reproduce it on their trunk build; they noted that
they rarely test their implementation with optimizations disabled.
Configuration 9 includes a fix for this, among other bugs we re-
ported; these bug fixes bring configuration 9 above our reliability
threshold, compared with configurations 10 and 11.

Kernels that use vectors in structs (such as in Figure 1(c)) pro-
duce LLVM IR generation errors when compiled by the Altera con-
figurations (20, 21); we reported this issue to Altera. Figure 1(d) il-
lustrates a struct-related miscompilation for configuration 17 (con-
firmed by the anonymized vendor); the barrier is required for
the bug to manifest. We also identified struct-related miscompila-
tions for the Intel HD Graphics 4600 and 4000 configurations (7,8).

Compilation for the Xeon Phi co-processor (configuration 18)
is prohibitively slow when relatively large structs are used with op-
timizations enabled. The host for our Xeon Phi card (a 2.0 GHz
Intel Xeon CPU) takes more than 20 seconds to compile a ker-
nel summarised in Figure 1(f) when targeting the Xeon Phi with
optimizations; in contrast the kernel is compiled in less than 0.5
seconds when targeting the CPU. We do not observe this problem
for kernels without structs or with small structs. Compilation speed
becomes regular if the barrier is removed. From a usability
perspective, we regard the prohibitively slow, struct- and barrier-
dependent compilation that we have observed, as a bug.

Figure 2(a) is a struct-related bug associated with the NVIDIA
configurations, which lie above our reliability threshold. Without
optimizations, configurations 1−, 2−, 3− and 4− incorrectly ini-
tialize the u field of the T struct in the declaration of t. The value
1 provided for the single-element array u should initialize the first
field, a, a 4-byte unsigned integer. Inspecting the PTX code pro-
duced for configuration 1− we find that only the first two bytes of
the union are initialized (corresponding to the c field of the S struct,
which is the b field of the union). The other two bytes are left unini-
tialized, so the expression c.u[i].a reads garbage when comput-
ing total. NVIDIA confirmed our report of this bug.

A vector-related bug Intel configuration 14± miscompiles the
example of Figure 2(b). Rotating the vector (1, 1) by the vector
(0, 0) should have no effect, yielding the vector (1, 1) whose x
component is 1 (see §3.1 for a description of the rotate vector
builtin). Inspecting the assembly code generated by the compiler
for configuration 14, we find that the value of this x component has
been incorrectly constant-folded to 0xffffffff. The bug is not present
in the more recent drivers associated with configurations 12 and 13,
nor in the older driver associated with configuration 15.

Bugs related to barriers The struct-related compiler issues of
Figures 1(f) and 1(d), discussed above, both require the presence of
barriers to manifest. We discuss two further miscompilations that
involve barriers and arise in relation to Intel configurations.

The example of Figure 2(c) is miscompiled by Intel configu-
rations 12− and 13−; two threads in the same group expose the
issue. The barriers play no role in protecting shared data, yet their
presence is necessary for miscompilation to occur. The forward-
declaration of f is also necessary, and we inline any function in the
source code the example is no longer miscompiled. Enabling op-
timizations (which perhaps forces inlining) also yields the correct
result. The kernel leads to segmentation faults with configurations
14− and 15−. We have reported these issues to Intel.

The kernel of Figure 2(d) is miscompiled by Intel configurations
14− and 15−. The kernel involves a complex expression that we do
not show here, but which is available as part of our online material.
Notice that the body of the loop in f is not reachable. Nevertheless,
removing the barrier from the loop body causes the kernel to yield
the correct result. Moving the declarations at the start of the loop
body past the barrier causes the kernel to crash at runtime, as does
simplification of the complex expression after the barrier. Enabling
optimizations causes the correct result to be produced, presumably
because the optimizer identifies the body of the loop as dead code.
The bug is not present in the more recent drivers associated with
configurations 12 and 13.
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Other basic wrong code bugs The kernel of Figure 2(e) is mis-
compiled by configuration 9+. When executed by a single group
consisting of a single thread, careful inspection of the conditional
guard shows that it evaluates to true, because *p and gx (the first
dimension of group id) are both 0, hence the value 1 should be pro-
duced. It is interesting that this bug requires the presence of the
global id gx; if the literal 0 is used explicitly instead the problem
does not manifest. The vendor associated with configuration 9 have
confirmed our report of this bug.

Figure 2(f) shows a kernel for which Oclgrind (configuration
19) yields wrong results (with and without optimizations). On re-
porting this to the Oclgrind developers they confirmed that it was
due to mis-handling of the comma operator. The latest Oclgrind re-
lease fixes this bug, as well as two other bugs we reported and two
further bugs we independently discovered but did not report.

Build failures Our testing revealed a number of build failures
associated with NVIDIA configurations 1 and 2, yielding LLVM-
related internal error messages such as “Wrong type for attribute
zeroext”, “Wrong type for attribute signext” and “Attributes after
last parameter!”. NVIDIA have fixed all the build failure issues we
reported in version 346.47 of their OpenCL driver (which is used
by configurations 3 and 4).

Testing the Intel CPU configurations led to failures in Intel-
specific LLVM optimization passes, including passes named “Intel
OpenCL Barrier” and “Intel OpenCL Vectorizer”, and several
other LLVM-related build failures; sample messages associated
with configuration 12 include: “Both operands to ICmp instruction
are not of the same type!”, “Call parameter type does not match
function signature!” and “Instruction does not dominate all uses!”.
We have reported these build failures to Intel.

We encountered a very high rate of build failures for configura-
tion 15, because it rejects legal arithmetic expressions that mix the
int and size_t types with certain operators. For example, the
code fragment: int x; x|= gx; (where gx denotes the x com-
ponent of a group’s id, which has type size_t) results in “error:
invalid operands to binary expression (‘int’ and ‘size t’)”.

Intel GPU configurations 7 and 8 appear to get stuck in an
infinite loop when compiling the kernel of Figure 1(e). If the for
loop bound of 197 is reduced to 196 then compilation immediately
fails with an internal error.

The AMD GPU configurations, with optimizations enabled
(5+, 6+), complain about unsupported irreducible control flow
for an example kernel that do not use goto or switch statements
(the only possible sources of irreducibility at the kernel source
level). The problem only occurs with optimizations, so we specu-
late that irreducibility is being introduced during optimization. We
reported this issue to AMD. It persists in the Catalyst 14.12 drivers.

For the majority of the tests we tried, the non-emulated Altera
FPGA configuration (21) either crashed or emitted an internal error.

7. Our Testing Campaign
We now describe our testing process and results in detail, which
uncovered bugs in all configurations. We continue to use the no-
tation i− and i+ to denote the configuration i with optimizations
disabled and enabled, respectively.

7.1 Initial Testing to Classify Configurations
We tested every configuration of Table 1, with and without opti-
mizations, on a set of 600 kernels randomly generated by CLsmith
which we call the initial kernels. This set consisted of 100 ker-
nels randomly generated using each of the six modes supported by
the generator: from BASIC through to ALL. We used a timeout of
60 seconds for compilation and execution (but excluding the time
taken to use CLsmith to generate the kernel). For Oclgrind (con-

Table 2. OpenCL benchmarks studied using EMI testing
No. of Lines Uses

Suite Benchmark Description Kernels of Code FP?

Parboil bfs Graph breadth-first search 1 65 ×
cutcp Molecular modeling simulation 1 98 X
lbm Fluid dynamics simulation 1 139 X
sad Video processing 3 134 ×
spmv Linear algebra 1 32 X
tpacf Nbody method 1 129 X

Rodinia heartwall Medical imaging 1 1060 X
hotspot Thermal physics simulation 1 89 X
myocyte Medical simulation 1 1050 X
pathfinder Dynamic programming 1 102 ×

figuration 19) we increased the timeout to 300 seconds as we knew
the emulator to be slow compared with the other configurations. For
the Altera configurations (20, 21) we did not count the lengthy time
required for offline compilation in the timeout limit. We then exam-
ined mismatches between configurations arising from this testing.

We set our reliability threshold as follows: for a configuration to
lie above the threshold, no more than 25% of the initial test results
for the configuration (considering results with and without opti-
mizations) should be build failures, runtime crashes or wrong code
results (where we judged the latter based on disagreement with the
majority result). We also considered the Intel Xeon Phi (configu-
ration 18) to be below the reliability threshold due to the issue of
prohibitively slow compilation of structs (see Figure 1(f) and the
discussion in §6), which made intensive fuzz testing impractical
for this configuration.

7.2 EMI Testing Over the Rodinia and Parboil Suites
Table 2 summarises 10 benchmarks, drawn from the Parboil
v2.5 [18] and Rodinia v2.8 [3] suites, that we evaluated using EMI
testing. The Parboil and Rodinia suites are mature and widely-used,
and each benchmark ships with tests and input data. This bench-
mark suite is comparable in size to the 11 real-world benchmarks
(9 SPECINT, Mathomatic and tcc) used to evaluate EMI testing for
C compilers [12]. Table 2 summarises each benchmark, indicat-
ing the number of kernels, total lines of kernel code5 and whether
the kernels use floating-point arithmetic. We selected these bench-
marks by initially favouring the three benchmarks that do not use
floating-point, selecting further benchmarks in decreasing order
of kernel code size. We preferred to avoid floating-point kernels
because of the possibility that the configurations under test may
employ so-called “fast math” optimizations (optimizations that ex-
ploit laws of the real numbers that do not hold for floating-point
numbers, such as associativity). Such optimizations can change the
results computed by a floating-point kernel, and we feared that the
triggering of these optimizations might be sensitive to EMI injec-
tion. However, we did not find floating point error to be the cause of
result mismatches when we manually investigated possible wrong
code bugs induced by our EMI injection process.

Preparing benchmarks We wrote a script that processes the ker-
nels of a benchmark and (i) equips the kernel with an additional
array parameter dead and (ii) randomly chooses one or two EMI
injection points (we decided on a per-benchmark basis whether to
use one or two injection points). For each injection we generated
125 possible EMI block variants using CLsmith, using a combi-
nation of the leaf, compound and lift pruning strategies with vari-
ous probabilities. As described in §5, we must cater for free vari-
ables (variables not defined in the EMI block). The script automat-
ically generates a header that either declares the variables locally
within the EMI block (substitutions off) or aliases free variables
with randomly chosen variables appearing in the original kernel

5 Using cloc 1.62, http://cloc.sourceforge.net
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Table 3. Results for EMI testing using the Parboil and Rodinia benchmarks of Table 2 (except myocyte and spmv)
Configuration; IDs as per Table 1; configurations 20 and 21 are excluded due to their reliance on offline compilation

Benchmarks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

bfs w? w? w? w? c? to to to c? c? c? c? c? X X X X X X
cutcp we X ng w? c? c? ce wd w? c? c? we we c? c? ng X c? ng
lbm c? c? cd cd ng ng X ce ng ng ng X X X X ng ng to ng
sad X ng X X ng ng ng ng ng ng ng X X X X ng ng to ng
tpacf X X X X c? wd X X ng ng ng ng ng ng we ng ng c? ng
heartwall wd wd wd wd w? ng X X ng ng ng c? c? c? c? ng X c? ng
hotspot c? c? X X we we we we ng ng ng we we we we we X we ng
pathfinder X X cd cd c? c? to cd X cd cd cd cd cd cd ng cd we ng

using #define macros (substitutions on). Some manual tweak-
ing was necessary to ensure well-typed substitutions. We edited the
host code of each benchmark to allocate and initialize the dead
array, and added command line arguments to configure which EMI
to be used and to toggle substitutions. It took one of the authors
around half a day to prepare each benchmark. Significant effort was
also required to enable execution on our Windows platforms.

Results For each benchmark, we considered 500 tests (125 EMI
blocks, substitutions on/off and optimizations on/off), each exe-
cuted with a 100s timeout. We compared the output of each test
against the expected output for the benchmark, which we gener-
ated by running the benchmark with an empty EMI block. Table 3
summarises the results for 19 of our 21 configurations; we exclude
the Altera configurations (20 and 21) because they require offline
compilation which was non-trivial to integrate with the Parboil and
Rodinia benchmarks. The table excludes myocyte and spmv: as dis-
cussed in §2.4 we found data races in these benchmarks. For each
configuration we give a single result for each benchmark that sum-
marises the worst outcome observed over its 500 tests (in decreas-
ing order): (w) at least one test generated the wrong result without
crashing; (c) at least one test crashed;6 (to) at least one test timed
out (but a timeout did not occur during generation with an empty
EMI block); (ng) generation with an empty EMI block failed; (X)
all tests ran successfully with no observed mismatches. Although
ng may seem severe—it indicates that the configuration cannot run
the benchmark at all—from a developer’s perspective this is at least
easy to observe; the other defects are induced by EMI variants and
are indicative of more subtle problems.

The superscript for each w and c denotes whether substitutions
were necessary for provoking the issue. We use we (respectively,
wd) to indicate whether it was necessary to enable (respectively,
disable) substitutions to provoke a wrong code bug, w? indicates
that a wrong code bug could be observed both with and without
substitutions. We use ce, cdand c? analogously for crashes.

Testing with the Intel HD Graphics 4000 GPU (configuration
8) led to a large number of timeouts, the cause of which was the
compiler bug of Figure 1(e), discussed in §6. As a work-around we
removed while(1) loops from EMI blocks for this configuration.

The table shows that problems were identified with all configu-
rations. Configurations 11, 10, 16 and 19 were unable to generate
the expected output (with an empty EMI block) for five or more
benchmarks (ng), showing that these configurations are not robust
with respect to standard OpenCL benchmarks. Three configura-
tions suffered problems due to timeout. Turning to the 28 wrong
code outcomes: enabling substitutions was necessary in 15 cases;
disabling substitutions was necessary in 6 cases; in the remaining
7 cases wrong code bugs could be observed both with and without
substitutions. This indicates that it is worth testing both with and
without substitutions, but that overall substitutions were effective.

6 In this context crash encapsulates both compiler errors and runtime errors
because compilation occurs online; differentiating between these outcomes
would have required extra manual work per benchmark.

7.3 Testing Using CLsmith
Table 4 summarises the results of applying the configurations lying
above the reliability threshold to large batches of kernels, each
generated using a different CLsmith mode. A 60-second timeout
was used for each test case for all configurations except Oclgrind
(configuration 19) for which a 300-second timeout was used.

The number of kernels used to test each mode is shown in
the left column of the figure. We generated 10,000 kernels per
mode, but had to discard 1563 ATOMIC SECTION mode and 1622
ALL mode kernels due to a bug in the implementation of atomic
sections that we discovered close to publication. There was not
time to generate replacement tests and re-test them across our
configurations, but it was straightforward to syntactically identify
and remove the affected tests. We used configuration 1+ (NVIDIA
GTX Titan) to generate the tests, discarding tests that failed to
compile or that timed out in order to ensure a reasonable number of
terminating tests.

For each mode and configuration, we indicate the number of
wrong code results observed (w), the number of build failures (bf),
the number of cases where the OpenCL application crashed (c), the
number of timeouts (to), and the number of tests that terminated
producing a result that we did not deem to be wrong (X).

We say that a configuration produces a wrong code result for
a kernel at a given optimization level if, among all the results
computed for the kernel, there is a majority of at least 3 among the
non-{bf,c,to} results for the kernel, and the configuration yields
a non-{bf,c,to} result that disagrees with the majority. Of course,
it is possible that in some instances the majority result is not the
correct result, though we have never found this to be the case
when investigating specific result mismatches. We also show, for
each mode and configuration, w%, the percentage of results non-
{bf,c,to} results that are wrong code results; i.e. the percentage of
w and Xresults combined that fall into the w category. We refer to
this metric as the wrong code percentage. This is useful to take into
account when comparing modes because the modes are evaluated
using varying numbers of tests.

It is also useful to consider w% when comparing configura-
tions. For example, looking at the results for the BARRIER tests,
configuration 3− yields 15 wrong code results compared with 13
wrong code results for configuration 15−. At first glance this seems
like a small difference. However, on closer inspection, 3− pro-
duced results (without failing during compilation, crashing at run-
time or timing out) for 8995 BARRIER tests, compared with just
4592 tests for 15−. This means that 3− had significantly more op-
portunity to produce wrong code results compared with 15−, but
did not do so. The w% figures of 0.2% and 0.3% for 3− and 15−
take this into account.

Discussion Recall that a prerequisite for the generated tests was
that they successfully compiled and did not time out on the GTX
Titan with optimizations (configuration 1+). As a result, the bf en-
tries are all 0 for 1+, and the to entries are close to 0 for this con-
figuration (there are some timeouts because we recorded full result
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Table 4. Applying the configurations above our reliability threshold to batches of CLsmith-generated tests
Configuration; IDs as per Table 1; only configurations above reliability threshold are considered; ± denotes opimizations off (−) vs. on (+)

1− 1+ 2− 2+ 3− 3+ 4− 4+ 9− 9+ 12− 12+ 13− 13+ 14− 14+ 15− 15+ 19− 19+ Total

B
A

S
IC

(1
00

00
) w 9 32 9 32 9 31 9 32 122 144 20 5 20 4 7 5 4 2 626 625 1747

bf 396 0 397 0 397 0 396 0 0 0 0 33 0 33 0 70 1720 1720 0 0 5162
c 352 523 365 537 553 530 539 520 289 185 831 630 831 622 51 226 18 155 4 4 7765

to 184 0 185 1 0 0 0 0 1857 1350 272 1724 289 1721 279 422 402 1042 1759 1760 13247
X 9059 9445 9044 9430 9041 9439 9056 9448 7732 8321 8877 7608 8860 7620 9663 9277 7856 7081 7611 7611 172079

w% 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 1.6 1.7 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.0 7.6 7.6 2.1

V
E

C
T

O
R

S

(1
00

00
)

w 9 17 9 24 9 25 9 17 176 160 31 12 31 12 29 102 11 59 915 916 2573
bf 366 0 366 0 366 0 366 0 0 0 7 55 7 56 6 78 1348 1348 0 0 4369
c 427 582 438 578 652 578 630 571 343 273 831 645 831 629 75 245 1836 540 163 162 11029

to 200 3 194 0 0 0 2 0 1276 951 277 1297 282 1396 318 461 254 945 1687 1708 11251
X 8998 9398 8993 9398 8973 9397 8993 9412 8205 8616 8854 7991 8849 7907 9572 9114 6551 7108 7235 7214 170778

w% 0.1 0.2 0.1 0.3 0.1 0.3 0.1 0.2 2.1 1.8 0.3 0.1 0.3 0.2 0.3 1.1 0.2 0.8 11.2 11.3 2.9

B
A

R
R

IE
R

(1
00

00
)

w 16 23 11 25 15 33 16 25 152 158 186 21 186 21 23 104 13 69 968 965 3030
bf 380 0 380 0 380 0 380 0 0 0 11 50 11 52 202 78 1331 1331 0 0 4586
c 415 554 420 560 625 541 607 544 466 317 905 713 904 713 3696 384 3988 812 143 141 17448

to 186 1 188 0 0 0 1 3 1279 930 236 871 236 842 238 518 89 885 1649 1677 9829
X 9003 9422 9001 9415 8980 9426 8996 9428 8103 8595 8662 8345 8663 8372 5841 8916 4579 6903 7240 7217 165107

w% 0.2 0.2 0.1 0.3 0.2 0.3 0.2 0.3 1.8 1.8 2.1 0.3 2.1 0.3 0.4 1.2 0.3 1.0 11.8 11.8 3.7

A
T

O
M

IC
S

E
C

.
(8

43
7)

w 13 17 12 21 13 23 12 18 158 127 40 19 39 19 24 83 12 51 845 846 2392
bf 225 0 225 0 226 0 225 0 0 0 2 25 2 25 4 60 883 883 0 0 2785
c 246 242 251 247 353 236 305 255 321 216 436 418 436 416 42 83 920 314 91 91 5919

to 54 1 57 0 0 0 1 0 445 293 64 193 67 195 92 151 59 272 740 725 3409
X 7899 8177 7892 8169 7845 8178 7894 8164 7513 7801 7895 7782 7893 7782 8275 8060 6563 6917 6761 6775 154235

w% 0.2 0.2 0.2 0.3 0.2 0.3 0.2 0.2 2.1 1.6 0.5 0.2 0.5 0.2 0.3 1.0 0.2 0.7 11.1 11.1 3.0

A
T

O
M

IC
R

E
D

.
(1

00
00

)

w 5 13 5 28 5 29 5 13 190 190 187 14 188 15 15 101 10 61 962 964 3000
bf 387 0 387 0 387 0 387 0 0 0 9 75 9 76 217 94 1410 1410 0 0 4848
c 439 570 450 579 659 580 638 577 421 273 934 697 935 688 3873 518 4093 862 172 172 18130

to 193 6 187 0 0 0 3 0 1257 933 260 1051 260 1114 210 409 78 844 1683 1662 10150
X 8976 9411 8971 9393 8949 9391 8967 9410 8132 8604 8610 8163 8608 8107 5685 8878 4409 6823 7183 7202 163872

w% 0.1 0.1 0.1 0.3 0.1 0.3 0.1 0.1 2.3 2.2 2.1 0.2 2.1 0.2 0.3 1.1 0.2 0.9 11.8 11.8 3.6

A
L

L
(8

37
8)

w 13 25 12 28 15 34 15 26 161 127 250 30 249 28 11 109 3 72 857 857 2922
bf 214 0 214 0 211 0 214 0 0 0 6 21 6 21 143 48 836 836 0 0 2770
c 233 226 236 230 337 214 296 230 413 267 532 430 530 431 3604 375 3340 641 75 75 12715

to 56 1 58 1 0 0 0 2 368 234 68 106 65 108 21 89 18 205 633 638 2671
X 7862 8126 7858 8119 7815 8130 7853 8120 7436 7750 7522 7791 7528 7790 4599 7757 4181 6624 6813 6808 146482

w% 0.2 0.3 0.2 0.3 0.2 0.4 0.2 0.3 2.1 1.6 3.2 0.4 3.2 0.4 0.2 1.4 0.1 1.1 11.2 11.2 3.9

data for 1+ after completing the test generation process, using a
separate test run during which some of the generated tests did time
out). The other NVIDIA configurations (2, 3, 4) show similarly low
build failure and timeout numbers without optimizations, as might
be expected since they have similar performance characteristics and
likely share compilation infrastructure between driver versions.

The lack of build failures, and the low number of timeouts,
means that most tests executed with a non-crash result on the
NVIDIA configurations. Our tests are thus biased towards discov-
ering wrong code bugs in the NVIDIA configurations. With this in
mind, the percentage of wrong code bugs over computed results,
w%, is notably low for these configurations with optimizations en-
abled. With optimizations disabled the wrong code percentage in-
creases considerably. Our modes do not appear to greatly affect the
wrong code percentage for NVIDIA configurations.

The wrong code percentage associated with anonymous GPU
configuration 9 is high, with w% consistently in the 1.5%-2.3%
range. This metric does not vary much across modes.

The Intel i7 CPU configurations (12, 13) exhibit a notably
higher wrong code percentage when optimizations are disabled. In
contrast, the Intel i5 and Xeon CPU configurations (14, 15) ex-
hibit more wrong code bugs when optimizations are enabled. VEC-
TOR mode appears to slightly increase the percentage of wrong
code bugs across the Intel CPU configurations. The BARRIER and
ATOMIC REDUCTION tests cause a dramatic increase in the wrong
code percentage for configurations 12 and 13. We did not find any
bugs related explicitly to the use of atomic operations, but we did
find bugs related to the use of barriers, and both the BARRIER
and ATOMIC REDUCTION modes make liberal use of barriers. The
wrong code percentage for these configurations is similarly high for

the ALL tests, which also feature barriers heavily due to incorporat-
ing the features of the BARRIER and ATOMIC REDUCTION modes.

Oclgrind (configuration 19) exhibits a very high wrong code
percentage due to a small number of bugs that have a high chance
of affecting randomly-generated kernels. One example is the bug of
Figure 2(f) related to handling of the comma operator. We reduced
several tests for which Oclgrind produced a minority result, and
inevitably ended up with a reduced program affected by one of
these known bugs. As discussed in §6, these issues have since been
fixed in the latest version of the tool. It is notable that the wrong
code percentage associated with Oclgrind is considerably lower for
the BASIC tests, that do not use vectors, compared with the other
test sets, all of which do use vectors. However, we did not find a
reduced test exhibiting a vector-related Oclgrind bug.

As discussed above, the NVIDIA configurations show an artifi-
cially low number of build failure since we required our generated
tests to build successfully on configuration 1+. Nevertheless, the
results show that CLsmith is able to provoke build failures in the
NVIDIA configurations when optimizations are disabled.

We did not provoke any build failures for the anonymous GPU
configuration (9). The associated vendor told us that they already
employed fuzzing in-house to identify build failures; our results
indicate that their efforts to minimise build failure issues have
paid off. Oclgrind also reported zero build failures, which may
be because it is based on the mature Clang/LLVM framework
and because it does not attempt to optimize kernels (observe that
the data for 19− and 19+ are practically identical, with the only
differences arising from timeout fluctuations).

Intel CPU configurations 12, 13 and 14 generally show a high
number of build failures with optimizations on compared with

74



optimizations off. An exception is that 14− has a high number
of build failures for the BARRIER, ATOMIC REDUCTION and ALL
tests; we attribute this to problems compiling kernels that make
extensive use of barriers, the feature that is common to these modes.

The Intel Xeon CPU configuration (15) has a very high number
of build failure due to the issue discussed in §6 where legal code
that mixes int and size_t data is rejected. We also note that the
build failure rates for 15− and 15+ are identical.

We focused our efforts primarily on understanding the causes
of wrong code bugs, and secondarily on build failures. We did
not invest much time investigating runtime crashes. The number
of runtime crashes are somewhat even across Table 4, except that
Intel CPU configurations 14 and 15 show a dramatic increase in the
number of runtime crashes for the BARRIER, ATOMIC REDUCTION
and ALL modes. Again, use of barriers is a common factor that may
be causing this. Recall that the example of Figure 2(c), which uses
barriers, causes 14− and 15− to crash with segmentation faults.

7.4 Testing Using CLsmith+EMI
To assess the effectiveness of EMI testing using CLsmith-generated
kernels, we generated a set of base kernels using the ALL mode,
each containing a random number of EMI blocks in the range 1–5.
CLsmith inherits from Csmith the property that large portions of a
generated program are dead code. We did not expect it would be
fruitful to inject dead-by-construction code exclusively into code
that is already dead. To avoid this, for each candidate base kernel
we compared the results obtained running the kernel using the GTX
Titan (configuration 1) with the dead array initialized to ensure
the dead-by-construction property (§5), and with the dead array
inverted to remove this property. If inversion did not affect the
computed result, we assumed that all EMI blocks were placed at
dead code points, and discarded the candidate program.

We used this procedure to generated 250 base kernels. From
each base, we generated 40 EMI variants by applying the pruning
strategies of §5, with every combination of pleaf , pcompound , plift
ranging over the set {0, 0.3, 0.6, 1} and satisfying the constraint
pcompound + plift ≤ 1 (§5), yielding 10,000 kernels total. We sub-
sequently had to discard 2800 of these kernels, as we discovered
that 70 of the base programs suffered from the bug in our imple-
mentation of atomic sections (see §7.3). We report results for the
7200 kernels derived from the remaining 180 bases.

Table 5 summarises the results obtained from applying the con-
figurations lying above our reliability threshold to these EMI vari-
ants. If all 40 variants associated with a base program lead to a
build failure, runtime crash or timeout result for a configuration,
i.e. no variant terminates with a computed value, we call the base
program a bad base for this configuration, and do not consider the
results from the EMI variants any further. The base fails row of the
table records the number of base failures for each configuration.

Otherwise, we say that a base program induces a wrong code
result for a configuration if there exist two variants for the base that
terminate yielding differing values. The w row of Table 5 records
the number of base programs that induced a wrong code result for
each configuration. We say that a base program induces a build
failure, runtime crash or timeout if at least one variant led to a
build failure, runtime crash or timeout result, respectively. The bf,
c and to rows of Table 5 record the number of (non-bad) base pro-
grams that induced these observations for each configuration. If all
40 variants for a base terminate, computing a uniform value, for a
configuration, we say that the base is stable for the configuration;
the stable row captures this. The numbers for a configuration sum
to at least 180, the number of base programs, and sometimes ex-
ceeds 180 because variants of a single base program might induce
multiple observations. We do not compare results between config-
urations nor across optimization levels, because one of the claimed

benefits of EMI testing is that it does not require multiple config-
urations or optimization levels: discrimination is provided by the
EMI variants derived from a base program. There are no bad bases
for configuration 1+ because we used this configuration to gener-
ate the base programs; likely as a knock-on effect, there are no bad
bases for other NVIDIA configurations with optimizations enabled.

Discussion We focus our discussion on wrong code results, draw-
ing a comparison with the results obtained through pure CLsmith-
based testing (§7.3).

The results indicate that EMI testing is effective at exposing
wrong code bugs in the NVIDIA configurations (1–4) when com-
pared with pure CLsmith-based testing: CLsmith using the ALL
mode (Table 4) showed a low wrong code rate for these configura-
tions, despite a large set of distinct tests and the availability of mul-
tiple configurations for cross-checking. We thus regard the number
of bases that induce wrong code bugs for these configurations in
Table 5 as high. In extreme contrast, EMI testing is totally ineffec-
tive at exposing wrong code bugs for Oclgrind (configuration 19),
while CLsmith-based testing showed a high rate of miscompilation.
This is because, as discussed in §7.3, the wrong code rate associ-
ated with Oclgrind arises from a small number of basic issues (c.f.
Figure 2(f)), rather than from optimization-related bugs. Between
these extremes, pure CLsmith-based testing readily exposed many
wrong code bugs for anonymous GPU configuration 9, but Table 5
shows that EMI variants induce mismatches for only three base pro-
grams with this configuration.

For Intel CPU configurations 12 and 13, EMI testing induces
numerous wrong code results; Table 4 shows that the wrong code
rate for pure CLsmith-based testing in ALL mode is also high for
these configurations. EMI testing for Intel CPU configurations 14
and 15 yields less meaningful results due to the high rate of bad
base programs, which are proportional to the high rate of build
failures and runtime crashes observed for these platforms during
CLsmith-based testing in ALL mode.

It is clear from Table 5 that CLsmith+EMI testing is capable of
inducing a significant number of build failures and runtime crashes.
Timeouts are induced in a small number of cases, but as we did not
record run-times for tests we do not know whether these are due to
fluctuations causing long-running tests to time out, or due to deeper
compiler-related issues.

On this set of base programs and configurations, we found our
novel lift pruning strategy (§5) to be slightly less effective overall
than the existing leaf and compound strategies in its ability to
induce defects, and to slightly reduce the effectiveness of the other
strategies when combined with them.

8. Related Work
Random testing The use of random testing to complement man-
ual compiler test suites is well-established [5]. The majority of this
work has focused on sequential programs, e.g. in C [20], C++ [21],
JavaScript and PHP [8]. Two exceptions investigate compilation of
volatiles [7] and C and C++ atomics [14]. Random differential test-
ing to detect volatile miscompilations by Eide and Regehr [7] is
based the idea that an execution of a program that uses volatiles
has an associated access summary) that should be invariant across
all compilers. This hinges on the fact that compilers are restricted
in the transformations that they can apply to volatile accesses. The
access summary metric is a count of the total number of loads and
stores to each volatile variable of the program; differences between
access summaries flag up possible miscompilations of volatiles.

Differential testing of volatiles has been extended to C++11
atomics [14] via generation, using a modified version of Csmith,
of deterministic C programs that use pthread mutexes and atomic
accesses. In this case a more complex metric comparing the traces
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Table 5. CLsmith +EMI results for the configurations lying above our reliability threshold
Configuration; IDs as per Table 1; only configurations above reliability threshold are considered; ± denotes opimizations off (−) vs. on (+)

1− 1+ 2− 2+ 3− 3+ 4− 4+ 9− 9+ 12− 12+ 13− 13+ 14− 14+ 15− 15+ 19− 19+ Total

base fails 6 0 6 0 13 0 13 0 30 21 15 15 14 15 123 27 129 55 33 33 548
w 10 11 9 11 10 6 9 7 3 3 20 16 21 16 1 11 1 10 0 0 175
bf 4 0 4 0 4 0 4 0 0 0 2 10 2 10 3 6 4 6 0 0 59
c 0 0 0 0 6 0 4 0 11 6 2 2 4 2 31 24 27 23 0 0 142
to 0 0 0 0 0 0 0 0 1 0 0 3 0 2 0 0 1 3 1 2 13
stable 160 169 161 169 147 174 150 173 136 150 141 137 141 138 25 117 21 88 146 145 2688

of memory accesses is required. These techniques are more sophis-
ticated than necessary for OpenCL 1.x concurrency, but could be
brought to bear in future work testing OpenCL 2.0 kernels.

EMI testing EMI testing [12] is a form of metamorphic test-
ing [4], which modifies a program to produce variants whose out-
puts can be predicted. For example, the Mettoc tool [19] uses
semantics-preserving transformations to yield program variations
whose output should match the original program. Hence, EMI test-
ing can be viewed as a type of metamorphic testing based on the
transformation of dynamically unreachable code. We are not aware
of any prior work that uses our dead-by-construction method for
manufacturing metamorphic compiler test cases.

Test case reduction and ranking Our experience confirms that
manual reduction of randomly generated programs to isolate com-
piler bugs is time-consuming. The C-Reduce tool [16] automates
this process for C programs, using static analysis to avoid introduc-
tion of undefined behaviours. A reducer for OpenCL would require
a concurrency-aware static analysis to avoid introducing data races.
The problem of ranking test cases in an order that promotes diver-
sity has also been investigated [5]; one successful ranking metric—
code coverage during compilation—may be difficult to apply to
proprietary OpenCL compilers that are invoked at runtime.

9. Generality, Limitations and Future Work
Our study has been in the context of OpenCL, but many of the ideas
we present could be more generally applied. EMI testing with dead-
by-construction injection is a general concept that could be applied
in other compiler fuzzing contexts. The methods we propose for
generating deterministic, communicating OpenCL kernels using
barriers and atomics are transferable to other multi-core, many-core
and distributed programming models that have these operations, in-
cluding CUDA, OpenMP and MPI. Like Csmith, CLsmith does not
generate test floating point programs. We view this as an exciting
open challenge: floating point imprecision is tolerated in the ac-
celerator programming domain, but the fuzzing methods we study
demand precise results. Our method is also limited to generation
of concurrency primitives used in OpenCL 1.x; OpenCL 2.0 offers
relaxed atomics that could enable richer communicating kernels.
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