
Backwards�compatible bounds checking for arrays and pointers in C

programs

Richard W M Jones and Paul H J Kelly

Department of Computing

Imperial College of Science� Technology and Medicine

��� Queen�s Gate� London SW� �BZ

Abstract

This paper presents a new approach to enforcing array
bounds and pointer checking in the C language� Check�
ing is rigorous in the sense that the result of pointer
arithmetic must refer to the same object as the orig�
inal pointer �this object is sometimes called the �in�
tended referent��� The novel aspect of this work is
that checked code can inter�operate without restriction
with unchecked code� without interface problems� with
some e�ective checking� and without false alarms� This
	backwards compatibility
property allows the overheads
of checking to be con�ned to suspect modules� and also
facilitates the use of libraries for which source code is
not available� The paper describes the scheme� its pro�
totype implementation �as an extension to the GNU C
compiler�� presents experimental results to evaluate its
e�ectiveness� and discusses performance issues and the
e�ectiveness of some simple optimisations�

� Introduction and related work

C is unusual among programming languages in provid�
ing the programmer with the full power of pointers�
Languages in the Pascal�Algol family have arrays and
pointers� with the restriction that arithmetic on point�
ers is disallowed� Languages like BCPL allow arbitrary
operations on pointers� but lack types and so require
clumsy scaling by object sizes�
An advantage of the Pascal�Algol approach is that

array references can be checked at run�time fairly e
�
ciently� in fact so e
ciently that there is a good case
for bounds�checking in production code� Bounds check�
ing is easy for arrays because the array subscript syn�
tax speci�es both the address calculation and the array

within which the resulting pointer should point�
A pointer in C can be used in a context divorced

from the name of the storage region for which it is valid�
it�s 	intended referent
� and this has prevented a fully
satisfactory bounds checking mechanism from being de�
veloped� There is overwhelming evidence that bounds
checking is desirable� and a number of schemes have
been presented� The main di�erence between our work
and Kendall�s bcc���� and Ste�en�s rtcc��� is that in
our scheme the representation of pointers is unchanged�
This is crucial� since it means that inter�operation with
non�checked modules and libraries still works �and much
checking is still possible�� Compared with interpretative
schemes like Sabre�C����� we o�er the potential for much
higher performance� Patil and Fischer ���� ��� present a
sophisticated technique with very low overheads� using
a second CPU to perform checking in parallel� Unfor�
tunately� their scheme requires function interfaces to be
changed to carry information about pointers� so also
has the inter�operation problem�
Another approach is exempli�ed by the commercially�

available checking package Purify ���� Purify processes
the binary representation of the software� so can handle
binary�only code� Each memory access instruction is
modi�ed to maintain a bit map of valid storage regions�
and whether each byte has been initialised� Accesses
to unallocated or uninitialised locations are reported
as errors� Purify catches many important bugs� and is
fairly e
cient� However� Purify does not catch abuse
of pointer arithmetic which yields a pointer to a valid
region which is not the intended referent� Fischer and
Patil ���� ��� provide evidence for the importance of this
re�nement�
Our goals in this paper are to describe a method of

bounds checking C programs that ful�lls the following
criteria�

� Backwards compatibility� the ability to mix checked
code and unchecked libraries �for which the source
may be proprietary or otherwise unavailable�

� Works with all common C programming styles

13

� Rigorously rejects violations of the ANSI C stan�
dard

� Checks static and stack objects as well as objects
dynamically allocated with malloc

� Understands scope of automatic variables

� Performance � including the ability to be able to
distribute programs with checks compiled in

There remain some circumstances in which checking is
incomplete� as we describe later� these are fairly un�
common in practice� The main shortcoming of the im�
plementation described in this paper is that the perfor�
mance is currently poor� However� the approach has
fundamental performance advantages over previously�
published work� Because checked code inter�operates
easily with unchecked code� the performance penalty
is con�ned to those modules where it is needed� Fur�
thermore� there is substantial scope for optimisation of
loop�invariant pointers and pointers which are induc�
tion variables� Because the pointer representation is
unchanged� there is no residual overhead once checking
code is eliminated� We return to this issue in Section ��

��� Overview of this paper

The next section reviews the problem of bounds check�
ing for C� and the limitations the language places on
the checking that can be done� In the following section�
the new approach is introduced� and we explain how�
unlike earlier schemes� our bounds checking scheme al�
lows inter�operation with unchecked code� Then we give
some details of our implementation� and discuss some
optimisations and their e�ectiveness� Finally� we dis�
cuss the e�ectiveness of the scheme in the light of our
experience with some large and well�known C programs�

� Objects� bounds checking in C� and its

limitations

ANSI C conveniently allows us to de�ne an object as
the fundamental unit of memory allocation� Objects
are created by declarations or allocations such as those
shown in Table �� which may be static� automatic �i�e�
stack�allocated�� or dynamically allocated�
Objects are stored sequentially in memory and can�

not overlap� Operations are permitted which manipu�
late pointers within objects� but pointer operations are
not permitted to cross between two objects� There is
no ordering de�ned between objects� and the program�
mer should never be allowed to make assumptions about
how objects are arranged in memory�

Bounds checking is not blocked or weakened by the
use of a cast �i�e� type coercion�� Casts can properly
be used to change the type of the object to which a
pointer refers� but cannot be used to turn a pointer
to one object into a pointer to another� A corollary
is that bounds checking is not type checking� it does
not prevent storage from being declared with one data
structure and used with another�
More subtly� note that for this reason� bounds check�

ing in C cannot easily validate use of arrays of structs
which contain arrays in turn�
Casts and unions can be used to create a pointer

from an object of any other type� in a machine�dependent
way� This cannot be checked using our technique� nor
by earlier approaches to bounds checking� since there is
no object for the pointer to be derived from�

� The technique and its advantages

In this section we review earlier approaches and explain
the basis for the new approach�

��� Earlier approaches to carrying bounds

information

base:

pointer:

limit:

Enhanced pointer

Storage object

Figure �� Modi�ed pointer representation� pointer�
base�address�extent triple

In earlier work in this area��� ��� ��� �� �� ��� ���� bounds
information is carried with each pointer at run�time� A
simple approach is to represent each pointer as a triple�
the pointer� together with the storage region�s base ad�
dress and limit or extent� Checking is then straight�
forward� The larger size of pointers requires changes in
storage allocation� and the code generator must be mod�
i�ed to copy pointers correctly� The change in pointer
size can be avoided by replacing each pointer with an
index into a table� which contains the pointer�base�limit
triple�
The net e�ect of both methods is the same� When

the program� at runtime� comes to use a pointer� it
must �rst verify that the operation that is about to be

14

int a� A simple variable
int a����� An array

struct f ��			�� g a� A single record
struct f ��			�� g a����� An array of records

malloc
���� A single unit of memory allocated with malloc

Table �� Typical objects�

performed is correct� It uses the information about the
base and size of the array or structure being pointed to
to decide if a particular index is legal�

��� Unchanged pointer representation

The problem with both these schemes is that the mod�
i�ed pointer representation is not interpreted correctly
by code compiled without bounds checking enabled�
This is a problem wherever a pointer is passed to or
from an unchecked procedure� whether as a parameter�
a result� or in a global variable� It is� of course� often
possible to translate pointers where necessary �called
encapsulation in bcc���� and rtcc����� but this is incon�
venient and di
cult to do reliably �e�g� where a func�
tion pointer may refer either to checked or an unchecked
routine�� Because of these di
culties� in rtcc only op�
erating system calls are encapsulated � all libraries must
be recompiled�
In this paper we show that the pointer representa�

tion need not be changed� This avoids the need either
for encapsulation or recompilation� The result is im�
proved functionality �e�g� to work with modules and
libraries provided in binary�only form�� and potentially
also improved performance� since well�tested modules
can run without checking�

��� Checking pointer use� how the scheme

works

Given these considerations� in our method pointers are
represented as simple addresses� as in ordinary C pro�
grams� We maintain a table of all known valid stor�
age objects� Using the table we can map a pointer to
a descriptor of the object into which it points� which
contains the base� extent and additional information to
improve error reporting�
We have to check both pointer arithmetic and pointer

use� Pointer arithmetic must be checked because the re�
sult must never be allowed to refer to an object di�erent
from the one from which it is originally derived� This
is because the object for which the pointer is valid can
only be determined by checking the pointer itself� by
looking it up in the object table�

Every valid pointer�valued expression in C derives
its result from exactly one original storage object� If
the result of the pointer calculation refers to a di�erent
object� it is invalid�
Although it sometimes useful to know where an in�

valid pointer has been calculated� reporting every in�
stance can yield many false alarms� We therefore re�
place such incorrectly�derived pointers with a pointer
value which is always invalid� called ILLEGAL �De�ned
as
void ���
 in our implementation�� This ensures
that a bounds error is reported when the pointer is ac�
tually used�

��� Example� pointers to objects

d eb c fa

Dead space between objects

p1
p2 p3

Figure �� Objects arranged in memory�

Figure � shows an example layout for several objects
of various sizes� perhaps arising from static allocations�
or from calls to malloc� Suppose we have pointers p��
p
 and p� referring to the objects� or perhaps to their in�
ternal components �their type is immaterial since casts
may have been used�� Table � shows permissible pointer
operations given the rule that pointer operations are
only permitted to take place within an object� and not
between objects�

15

p
 � p� Permitted� Both pointers are within the same
object�

p� � p
 Not permitted� Makes assumptions about the
layout of objects in memory�

Increment p
 until p
 �� p� Not permitted� As soon as p
 is incremented
beyond the end of object b� a bounds error will
be reported�

Table �� Permissible operations on pointers p��p�
in Figure �

��	 Problem� legal out
of
range array point

ers

An awkward complication arises with arrays� Consider
the �correct� code in Figure ��

f��
f
int �p�
int �a � �int �� malloc ���� � sizeof�int���
for �p � a� p � 	a
����� ��p�
�p � ��

return a�
g

Figure �� Iterating over an array�

On exit from the loop� p points to a������ The �nal
��p increments p beyond the range for which it is valid�
although the resulting pointer is never used� Accord�
ing to the de�nition of permissible pointer operations
above� this should be �agged as an error since p may
now point to a di�erent object�
The ANSI C standard��� �section ������ lines ������

states that for an array declared Type a�N��� a pro�
grammer may only generate pointers to elements a����
a���� up to a�N�� The last element does not literally
exist� and any attempt to dereference a pointer to a�N�
will result in unde�ned behaviour �or in our case� a
bounds error�� It is not permissible to create a pointer
to� for instance� element a���� of an array� and such
programs will not be portable to architectures where
all objects are stored in separate segments�
To overcome this problem� we place at least one byte

of dead space between objects in memory �allocations
are often aligned to � or � byte boundaries in mem�
ory so there may be several bytes between adjacent ob�
jects�� A pointer to a�N� can now be distinguished from
a pointer to the next adjacent object in memory� �see
the Appendix for an example��

�There is a subtle assumption here� if the size of the object were

not an integer multiple of the array element size� then a�N� could lie

more than one byte beyond its limit �depending on the size of the

element type�� However� this case is a bounds error since there is

Unfortunately we cannot pad parameters passed to
functions �since this would mean that the parameter
layouts assumed by checked and non�checked code would
be incompatible�� This results in a small ambiguity� We
resolved this partially in our implementation by �agging
function parameters and treating them specially� Essen�
tially� when looking up pointers to parameters� we treat
a reference to 	a�N�
 as a possible pointer to the next
object in memory� If there is an adjacent parameter�
then the pointer will point to the next object�
This is an instance where checking is incomplete� a

pointer to an array passed as a parameter can be in�
cremented to point to the later parameters without an
error being reported� Using the pointer to refer to ear�
lier parameters or elsewhere will be trapped correctly�
In practice this solution was satisfactory� since al�

though it is possible to pass actual structures and struc�
tures containing arrays as parameters� this is very rare�
and even then most cases can be caught� The infre�
quency of use� and the fact that we catch many cases
anyway� make this potential loophole an extremely mi�
nor concern�

��� Objects originating in unchecked code

When an object is allocated in checked code� it is en�
tered in the object table� When the resulting pointer
is used in checked code� bounds checking works fully�
If the pointer is passed to unchecked code� unchecked
accesses can occur�
When a pointer is passed from unchecked to checked

code� it may originate either from a checked or unchecked
allocation �note that dynamically�allocated objects are
always registered since even unchecked code must call
the checked malloc function��
There are two cases�

�� The pointer passed fromunchecked to checked code
points into a checked object�

This may be correct� as it may have been derived
from a pointer passed to it� or it may be the result

insu	cient space for a�N
���

16

from a call to the �modi�ed� malloc storage allo�
cator� In this case� checking will proceed normally�

It may be incorrect� the pointer may be improp�
erly derived from some other object� This case is
indistinguishable and no error will be reported�

�� The pointer passed from unchecked to checked code
points into an object which does not appear in the
object table because the space was allocated in
unchecked code�

This is detected when the pointer is used� Al�
though it may be helpful to issue a warning mes�
sage and to perform basic sanity checks� the pro�
gram can proceed without false alarms� This is
because the key check is whether� in pointer arith�
metic� the result refers to the same object as the
pointer from which it was derived� If the original
pointer is not registered� the result should not be�
Accidental use of unchecked pointers in checked
code to damage checked objects is thereby pre�
vented�

��� Maintaining the object table� tracking

creation and deletion of objects

At run�time� we track objects as they are created and
deleted� We maintain an ordered list of objects in mem�
ory� and employ a fast method to convert pointers to ob�
jects� Several suitable structures are available for this
purpose� We used a splay tree in our implementation���
�� but other structures such as tries and skiplists might
be suitable�
Static objects �global variables� variables declared as

static in functions and string constants� persist over
the lifetime of the program� A simple modi�cation to
the compiler and�or the linker can be made to produce
a list of these objects� As indicated above� it is not
necessary to �nd objects in the unchecked parts of the
code�
Dynamically allocated objects � those declared with

malloc and destroyed with free� can be tracked by a
simple modi�cation to the C library� Although malloc

often introduces padding anyway� care is needed with
objects allocated dynamically by other means �such as
mmap and sbrk��
Stack objects present greater di
culties� since the

C goto command may mean that they are created and
destroyed at several di�erent places in the code �see
Figure ���
In this code fragment� b is in scope between the inner

set of curly brackets� The goto label�� statement has
the side e�ect of creating b and goto label
� destroys
it� In addition� b must be created and destroyed if and
when control passes the inner curly brackets�

f ��
f
int a�
if �

� goto label��
f
int b�
��

 ��

label��
��

 ��
if �

� goto label��
��

 ��

g
label��
��

 ��

g

Figure �� Stack objects created and destroyed by goto�

In our implementation� we used the C�� construc�
tor�destructor mechanismof our compiler �GCC� to track
such variables� This is fairly common since many C
compilers are built to handle C�� too� Details lie be�
yond the scope of this paper�
Parameters are a special form of stack object� Care

must be taken to ensure that parameters are created
once on entry to the function� and deleted on exit� even
if the procedure exits with return early on� The C��
constructor�destructor mechanism can handle this too�
Ordinary stack objects must be padded as described

in section ���� Parameters are not padded� so that
checked and unchecked functions have compatible pa�
rameter layouts� ANSI C prevents using the return
value of a function as an lvalue immediately� Since all
return values are therefore copied into a variable in the
calling function� there is no need to take special action
checking or padding aggregate function results�

� Implementation in an existing compiler

We implemented our bounds checking scheme in the
GNU C compiler �GCC�� In this section we brie�y ex�
plain how this was done� The resulting program is freely
available from a variety of sources�����

��� Checking pointer operations

We altered GCC to replace pointer operations with calls
to a library of checking functions� Typically when the
programmer writes p � i� where p has a pointer type
and i is an integer� the compiler replaces it with�

�T �� bounds check ptr plus int�p� i� sizeof�T��
FILE � LINE ��

17

T � is the type of the pointer p� FILE and LINE

are macros that expand to the current �le and line num�
ber� and are used to locate errors when they occur�

operator�operand types
pointer �integer� �array reference�
pointer �� element �reference to record �eld�
pointer � integer �yields pointer�
pointer � integer �yields pointer�
pointer � pointer �yields integer�
pointer � pointer �comparisons�
pointer � pointer
pointer �� pointer
pointer �� pointer
pointer �� pointer
pointer �� pointer

�pointer �dereference��
pointer�� �post�increment�
pointer�� �post�decrement�
��pointer �pre�increment�
��pointer �pre�decrement�

Table �� Operators requiring checking

Table � shows the operators where checking code has
to be added� Note that we must check pointer arith�
metic as well as pointer use� We also check pointer
comparisons and subtractions since the result is valid
only if the operands refer to the same aggregate�
In order to handle compound operators correctly and

e
ciently� we speci�cally detect and replace the follow�
ing patterns�

� ��pointer is replaced with pointer

� �pointer�integer� is replaced with pointer � integer

� �pointer �� element is replaced with pointer � o��
setof�element��

As described above� certain pointer operations silently
return the special representation ILLEGAL �De�ned as

void ���
 in our implementation�when they fail� This
allows programmers to make illegal pointers� and only
have them caught later if the programmer attempts to
dereference them� For instance� in an array declared
int a������ attempting to generate a��� results in an
ILLEGAL pointer which is caught when used later� All
pointer operations catch ILLEGAL pointers passed and
throw bounds errors�

��� Using existing C

mechanisms to track

stack objects

Ordinary stack objects �not function parameters� are
padded by tricking GCC into believing they are one byte
larger than they really are� A patch to the GCC alloca

function catches variable�sized stack objects�
In order to de�register stack�allocated objects on block

exit� we used the constructor�destructor mechanismbuilt
into GCC and designed to handle C�� objects� even
where they may be created or destroyed by uses of goto�
The code shown in Figure � contains several stack vari�
ables in di�erent scopes� The code is compiled as if the
user had written the version in Figure ��

��� Finding statically allocated objects at

compile and link time

We modi�ed the back�end of GCC slightly to construct a
table of statically allocated objects� such as global vari�
ables and string constants� Each source �le compiled
with bounds checking enabled will contain such a table�
and this is automatically loaded at run�time before the
program starts running� The design of GCC enabled
this to be done in a straightforward manner�
It is desirable to track down objects declared in unchecked

code too� although not strictly necessary as described
earlier� A simple tool was written that takes a library
archive or object �le� and writes out a table of static ob�
jects contained therein� This table can then be linked
to the program�
Static objects are padded by asking the linker to

allocate one extra byte after each object�

��� Minimal modi�cations to malloc and

free

We modi�ed the GNU malloc library to register dynam�
ically allocated objects as they are created� and dereg�
ister them as they are freed� A single extra byte of
padding is added to each object when it is allocated�
The new library is linked automatically and replaces

all calls to the previous malloc family of functions�

��	 Modi�cations to C library functions

Unlike many other C compilers� GCC usually works with
the system�installed C library on whatever operating
system it runs� In most instances� the source to these
libraries is not freely available� so users will be forced to
run them without bounds checking� This implies that a
call to a function such as strcpy� passing a bad pointer�

18

int sum �int n� int �a�
f
int i� s � ��
for �i � �� i � n� ��i�
s �� a
i��

return s�
g

Figure �� Vector sum example with stack objects�

int sum �int n� int �a�
f
�� bounds push function enters a function context
 A
� matching call to bounds pop function will
� delete parameters

��
bounds push function ��sum���
bounds add parameter object �	n� sizeof �int��

��
bounds add parameter object �	a� sizeof �int���

��

�� Extra scope created around the function
 GCC will
� call bounds pop function when leaving this
� scope

��
f
�� Declare stack objects� and use GCC�s destructor
� mechanism to ensure bounds delete stack object is
� called for each variable however we leave scope
� �even if we leave with goto�

��
int i�
bounds add stack object �	i� sizeof �int��

��

int s � ��
bounds add stack object �	s� sizeof �int��

��

for �i � �� i � n� ��i�
s �� ��int��

bounds check array reference �a� i�
sizeof �int��

��

bounds delete stack object �	s��
bounds delete stack object �	i��

g
end�

bounds pop function ��sum��� �� Delete a� n
 ��
return s�

g

Figure �� Vector sum example with stack object man�
agement using the C�� constructor�destructor mech�
anism�

will not result in a bounds error� but in a segmentation
fault� or in random damage to memory�
To detect such errors� we replaced many C library

functions� with e
cient bounds�checked versions� Calls
to the ANSI str� and mem� functions are checked in
this way� The implementations of memcpy and strcpy

also check for illegal copying of overlapping memory seg�
ments�

��� Splay trees to look up pointers quickly

In order to reduce the overhead of converting pointers
to objects on the occasions when that is necessary� we
store the object list as a splay tree��� ��� Splay trees
are binary trees where frequently used nodes migrate
towards the top of the tree� In tests it was found that
the look�up function was iterated on average ���� times
per call on a typical large program� We unrolled the �rst
two iterations of the loop to optimise these cases�

	 Performance and optimisations

For the bounds checking scheme outlined above to be
useful� careful consideration must be given to optimis�
ing the code produced� In particular� it is possible to
reduce the number of accesses to the splay tree that
are required quite considerably� In the next few para�
graphs we describe some simple optimisations we have
implemented� some further optimisations which should
be straightforward to add� and we brie�y discuss the
problematic cases which remain�

	�� Eliminating calls to register unused vari

ables

If the programmer never takes the address of a stack
variable� then no pointer can ever be generated that
refers to that variable� and so it is unnecessary even
to consider that variable for bounds checking purposes�
This is extremely e�ective� as addressable local vari�
ables are rare in typical programs�

	�� Eliminating look�ups in loops over ar

rays

For further signi�cant gains in performance� we sug�
gest a simple scheme for optimising loops over arrays
using code motion� Consider the fragment of code in
Figure � after bounds checking code has been added in
a simple�minded way� In Figure � we have made the
pointer�to�object conversion explicit by inlining part of
the procedure call�

19

int a
���� i�
for �i � �� i � ��� ��i�
�� This is the code substitution for �a
i� � i�� ��
��int��
bounds check array reference�a� i� sizeof�int��

� � i�

Figure �� Code after simple�minded substitution of a
checking function�

int a
���� i�
for �i � �� i � ��� ��i�
f
object �obj � bounds �nd object �a��
if �obj 		 obj��base �� 	a
i�

		 	a
i� � obj��extent�
a
i� � i�

else
�� throw a bounds error and exit ��

g

Figure �� Code after partially inlining the checking
function�

Clearly the call to do the pointer�to�object conver�
sion � bounds find object� should be moved outside
the loop in the code motion phase of the optimiser�
An e
cient compiler would then be able to remove
the bounds checking tests �obj��base �� �a�i� and
�a�i� � obj��extent� entirely and replace them with
two tests outside the loop�
This may be done if there is a way to specify that

the call is a constant function �ie� has the same return
value when called multiple times� provided that objects
are not added or deleted in between calls� GCC does not
provide a way to encapsulate this subtlety� and so our
implementation does not yet make this optimisation�
Loops which iterate through arrays using pointers

�instead of incrementing an array subscript as above�
are more di
cult� bounds find object will be ap�
plied to the pointer� which is not loop invariant� Here
a more specialised optimisation for induction variables
should help�

	�� Di�culties optimising loops over linked

structures

Loops over linked lists� tree structures and the like pro�
vide a greater challenge� We were not able to devise an
e
cient method of optimising loops that traverse linked
data structures� although the splay tree we used to im�
plement the object table will tend to cache frequently
used objects like the elements in the list near the top�

� Evaluation

We have used the modi�ed compiler to recompile a wide
variety of applications software� In this section we re�
view our experience with reference to some substan�
tial and freely�available C programs� We comment on
the problems we encountered� the e�ectiveness of the
scheme in �nding errors� and the performance of the re�
sulting code with bounds checking enabled for the entire
program �excluding libraries��
We compiled the scripting and GUI language Tcl�Tk���

in its entirety �around ������� lines of code�� We made
�� changes to the source code �see table ���

no� of instances

Contravening ANSI standard by
pointing to negative array o�sets�

�

Fixing pointer nasties� such as
adding o�sets to NULL pointers�

�

Using pointers that refer to objects
freed in a realloc�

�

Changes to support goto restric�
tion caused by using C�� con�
structor and destructor mecha�
nism�

�

Table �� Changes made to the source of Tcl�Tk�

The resulting interpreter ran all the Tk demos cor�
rectly� although noticably more slowly than without
checking� The interactive scripts were still quite usable
and responsive� but the authors would not recommend
using bounds checking in production code until the fur�
ther optimisations suggested above have been made�
We also compiledGhostscript� a freeware PostScriptTM

interpreter� We needed to �x the non�ANSI imple�
mentation of stacks that Ghostscript uses �it initial�
izes pointers to the �� element of each stack�� but the
changes involved were relatively minor� and the pro�
gram ran without error� Again� there was a noticable
slowdown when drawing complex graphical images� but
the program was by no means unusable�

GCC itself compiles with the bounds checking patches�
Unfortunately� GCC makes extensive use of obstacks�
which are large singly�allocated areas of memory that
may contain many variable�sized objects� Since the
bounds checking library treats these areas of memory
as single objects� simple bounds errors between the el�
ementary objects contained inside are not detected� In
hindsight� we should have modi�ed GCC�s obstack li�

20

brary very slightly to interact correctly with the bounds
checking library �by allocating and deleting the simple
objects explicitly��
MicroEMACS� a simple text editor that has been

ported and used widely� actually has bounds errors which
this program picked up immediately�
Although it is possible to construct programs that

perform very badly indeed when bounds checking is
added � such as programs that solely iterate over long
linked lists� doing almost no work at each node � real
programs are for the most part quite usable� Never�
theless� a good implementation of this technique must
consider optimisation issues very carefully� It is un�
likely that we could ever achieve the ����� perfor�
mance loss that would be acceptable if programs are
to be distributed with bounds checks compiled in� In
practice� most programs showed a ��� times slowdown�
which is comparable to other commercial bounds check�
ing packages�
Fischer and Patil ���� ��� provide interesting evi�

dence for the practical importance of checking pointers
are used to refer only to the intended referent� compared
with the checking provided by tools such as Purify�

� Further work

We plan to investigate optimisation techniques further�
and when we have done so we will present benchmark
performance comparisons� While we hope to achieve
fairly good performance using conventional data �ow
analysis as described earlier� there is also scope for inter�
procedural optimisation� and ultimately it may be pos�
sible to validate non�trivial examples at compile�time�
using� for example� partial evaluation ����
The range query lookup on which checking is based

is critical to performance� and there is scope for exper�
imental work to tune our splay tree approach and to
study alternatives�
There remain some loopholes in our checker� The

most serious in practice is that it is possible to manu�
facture erroneous pointers using unions� casts and uni�
tialised data� At considerable performance cost� we
could maintain a shadow of the accessible store� indi�
cating whether it has been initialised and whether it is
a pointer� There is scope for optimisation� and doing so
would be a substantial project�

� Summary and conclusions

We have shown how bounds checking can be provided
in a convenient form� with recompilation con�ned to
the �les where problems are suspected� The execution
time penalty for code compiled with bounds checking

enabled is substantial� but in many cases this can be
alleviated by optimisation� and this is the most press�
ing direction for further enhancements� The technique
has been applied to a wide variety of C programs with
generally good results�

Acknowledgements Wewould like to acknowledge
the helpful comments of our anonymous referees�

References

��� American National Standard for Information Sys�
tems� Programming language C� Technical Report
ANSI X����������� ANSI Inc�� New York� USA�
�����

��� L�O� Andersen� Program Analysis and Specializa�
tion for the C Programming Language� PhD thesis�
DIKU� University of Copenhagen� Denmark� �����
DIKU Research Report ������

��� D�Clark� Splay trees� Dr� Dobb	s Journal� page
���� December �����

��� D�D�Sleator and R�E�Tarjan� Self�adjusting binary
search trees� Journal of the ACM� �����������
�����

��� D�W�Flater� Y�Yesha� and E�K�Park� Extensions
to the C programming language for enhanced fault
detection� Software
 Practice and Experience�
�������������� June �����

��� R� Hastings and B� Joyce� Purify� fast detection
of memory leaks and access errors� In Proceedings
of the Winter USENIX Conference� pages ��������
�����

��� J�L�Ste�en� Adding run�time checking to the
portable C compiler� Software
 Practice and Ex�
perience� �������������� �����

��� M�V�Zelkowitz� P�R� McMullin� K�R�Merkel� and
H�J�Larsen� Error checking with pointer variables�
In Proceedings of the ��
� ACM National Confer�
ence� ACM� New York� USA� �����

��� John Ousterhout� Tcl and the Tk Toolkit� Addison�
Wesley� �����

���� Harish Patil and Charles Fischer� Low�cost� con�
current checking of pointer and array accesses in
C programs� In �nd International Workshop on
Automated and Algorithmic Debugging �AADE�
BUG	���� St Malo� France� May �����

21

���� Harish Patil and Charles Fischer� Low�cost� con�
current checking of pointer and array accesses in C
programs� Software Practice and Experience� �����

���� R�W�M�Jones� Bounds checking patches for the
GNU C compiler� Available via the world�
wide web from http���www�dse	doc	ic	ac	uk��

�rj��bounds�checking	html and via anonymous
ftp from
ftp���dse	doc	ic	ac	uk�pub�misc�bcc�

���� S�C�Kendall� Bcc� run�time checking for C pro�
grams� In USENIX Toronto ���� Summer Con�
ference Proceedings� USENIX Association� El� Cer�
rito� California� USA� �����

���� S�Kaufer� R�Lopez� and S�Pratap� Saber�C� an
interpreter�based programming environment for
the C language� In USENIX San Francisco ����
Summer Conference Proceedings� USENIX Associ�
ation� El� Cerrito� California� USA� �����

22

Appendix� Examples

This appendix presents a number of small examples which illustrate the technique�s power and limitations�

Basic example illustrating simple bounds checking

�include �stdio
h�
void main�� f

char A
����f�����������������������������������g�
char B
����f�a���b���c���d���e���f���g���h���i�g�
char �p � A�
while���

putchar��p����
g

Output from the bounds�checking run�time system�

ShowItWorks
c����Bounds error� attempt to reference memory overrunning the end of an object

ShowItWorks
c���� Pointer value� �xe��ae�
ShowItWorks
c���� Object �A��
ShowItWorks
c���� Address in memory� �xe��ad�

 �xe��ae�
ShowItWorks
c���� Size� �� bytes
ShowItWorks
c���� Element size� � bytes
ShowItWorks
c���� Number of elements� ��
ShowItWorks
c���� Created at� ShowItWorks
c� line �
ShowItWorks
c���� Storage class� stack
���������

Simple example showing A�N� is a valid pointer

�� A pointer is allowed to refer to the byte after the object from which it
� is derived
 The array is padded by one byte� if necessary� so that this
� is distinguishable from an illegal operation

��

�include �stdio
h�

main��
f

int a
���� �p�

�� Initialize array �a� to �
 ��
for �p � 	a
��� p � 	a
���� p���

�p � ��

�� Now �p� points to 	a
���� which is a valid address� but if we
� try to use it� we�ll get an error

��

23

���p � �� �� OK �� sets a
�� to � ��
���p � �� �� Bounds error �� tries to set a
��� to � ��

g

Output from the bounds�checking run�time system�

OneBeyondArrayBounds
c����Bounds error� attempt to reference memory overrunning the end of an object

OneBeyondArrayBounds
c���� Pointer value� �xe��ae�
OneBeyondArrayBounds
c���� Object �a��
OneBeyondArrayBounds
c���� Address in memory� �xe��ab�

 �xe��adf
OneBeyondArrayBounds
c���� Size� �� bytes
OneBeyondArrayBounds
c���� Element size� � bytes
OneBeyondArrayBounds
c���� Number of elements� ��
OneBeyondArrayBounds
c���� Created at� OneBeyondArrayBounds
c� line ��
OneBeyondArrayBounds
c���� Storage class� stack

Checking of out
of
range automatics

�include �stdio
h�

char �G�

void f�� f
char A
����f�����������������������������������g�
G � A���

g

void main�� f
f���
putchar��G��

g

In this example� the global variable G is used to capture a pointer into a stack�allocated array� The pointer is invalid
after the function f has returned� Output from the bounds�checking run�time system�

OutOfRangeAutomatics
c����Bounds warning� unchecked stack object used at address �xb���ef
��

Arrays within structures are not checked

struct f
int obj�
����
int obj�
����

g s�

24

main�� f
int i�
for �i � �� i � ��� ��i�

s
obj�
i� � i� �� no bounds error� reference is within allocation object ��
g

This example illustrates a limitation on bounds checking as we have de�ned it� The variable s consists of a single
storage object� and the bounds checking does not verify that its use is consistent with the type declaration� To do so
would considerably add to the system�s complexity� but� more importantly� would lead to false reports in situations
where casts are used quite legitimately�

Arrays within arrays are not checked

�� Abuse of subarrays of a multidimensional array cannot be checked

��
int i�
double a
���
����

main�� f
for �i � �� i � ��� ��i�

a
��
i� � i� �� No bounds error� reference is within allocation object ��
g

As in the previous example� the array a consists of a single object� and bounds errors are reported only when a
reference outside the whole array is derived�

Pointer to unchecked object passed to checked code

�� In �le �unchecked
c�

��
int �unchecked fn �void�
f

static int a
����
return a�

g

�� In �le �checked
c�

��
extern int �unchecked fn �void��

int main ��
f

int �a � unchecked fn ��� i�

for �i � �� i � ��� ��i�
a
i� � i� �� No bounds error
 ��

g

25

When the variable a is used� it is found to have no corresponding object table entry� Although a warning can be
issued here� it is not necessarily an error since the pointer may have been imported from an unchecked module �Note
that this problem can be overcome by adding the object to the object tree by hand� using
bounds note constructed object
			����

Correct inter
operation with non
trivial system calls

�� Example to show interworking with system calls etc �under SunOS �
��

�
� Allocate a ��page region� set VM protection to disallow access� install a handler to
� catch the resulting faults� re�enable access and continue
 Loop runs over end of region

��
�include �stdio
h�
�include �signal
h�
�include �sys�mman
h�
char �region�
int pagesize�

void SEGVHandler�sig� code� scp� addr�
int sig� code� struct sigcontext �scp� char �addr�

f
�� Reinstate the page in question ��
char �pagebase � �char ����int�addr � pagesize � pagesize��
mprotect�pagebase� pagesize� PROT READ j PROT WRITE��
�� Now we should return and restart the faulting instruction ��

g
void main�� f

char �p�
signal�SIGSEGV� SEGVHandler��
pagesize � getpagesize���
region � valloc�pagesize����
mprotect�region� pagesize��� PROT NONE��
for �p � region� p��	region
pagesize���� p��pagesize�

�p � �p��
g

Output from the bounds�checking run�time system�

Signals
c����Bounds error� attempt to reference memory overrunning the end of an object

Signals
c���� Pointer value� �x�����
Signals
c���� Object ��unnamed���
Signals
c���� Address in memory� �x�����

 �x���f
Signals
c���� Size� ����� bytes
Signals
c���� Element size� � bytes
Signals
c���� Number of elements� �����
Signals
c���� Storage class� heap

This example is intended to demonstrate that bounds checking can be used even in quite sophisticated contexts
with subtle inter�operation with the operating system� Although the actions of the system calls themselves are not
checked �of course they could be�� the fault address addr passed to the signal handler is checkable with no special
arrangement�

26

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 273.61, 84.79 Width 35.34 Height 35.34 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 273.6051 84.7902 35.3365 35.3365

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 0
 14
 13
 14

 1

 HistoryList_V1
 qi2base

