
Industrial Applications

of Static Verification

Roderick Chapman, 25th November 2016

Contents

• Goals for Static Verification

• SPARK is… (and isn’t…)

• Verification - what and how

• Projects…

Contents

• Goals for Static Verification

• SPARK is… (and isn’t…)

• Verification - what and how

• Projects…

Goals…

• “Design goals…hmmm…yes…you should definitely

have some…”

Guy L Steele Jr (ACM SIGPLAN 1994)

• SPARK has evolved over the years from its first

definition in 1987 to the latest release in February

2016.

• BUT..we like to think that the design goals have

persisted and have not been compromised.

General SV goals…
• What would you really like from any SV tool?

• How about these “Big five” goals:

1. SOUND

• No “False Negatives” please!

• Sound tool says: “There are definitely no bugs”

• Unsound tool says: “I’ve done my best and I can’t find any more bugs…”

• The bad news: all general purpose SV tools for standard unsubsetted

programming languages are unsound. See Coverity’s “Billion Lines of

Code Later…” article in CACM, for example.

General SV goals…
2. COMPLETE

• Very few “False Positives” or “False Alarms” please.

• Very easy to write a tool that says “Warning: your

program might have a bug…” all over the place…

• Very annoying for users. The number 1 cause of

customer complaints!

• Zero false alarms is impossible for non-trivial program

properties (See “Rice’s Theorem” for example).

General SV goals…
3. FAST

• How long are you willing to wait for SV tool to run? It seems there are four

important milestones:

• “Now”

• Coffee Break

• Lunch

• Overnight

• For non-trivial programs (e.g. 250kloc)

• Psychological driver: SV must be faster than “let’s compile and test our

program to see what it does…”

General SV goals…
4. MODULAR and CONSTRUCTIVE

• SV works on incomplete programs, during development.

• Modules can be verified in isolation. Integration of modules

does not require re-verification of the “whole thing”.

• You never need to analyse the “whole program.”

• nb…proper modularity has huge impact on analysis

speed as well…

• A bit like “separate compilation” in most languages.

General SV goals…
5. DEEP

• Verification of non-trivial program properties, such as

• “Type safety” and “Memory safety”

• Absence of undefined behaviour

• Partial correctness

• Termination

• Invariants

• Application-specific safety- and/or security properties.

General SV goals…

• The “big five” goals

• The bad news: with any standard unsubsetted

language (e.g. C, C++, Ada)…pick any 3.5!

• Actually, you don’t get to pick…some tool vendor picks for

you. Tough luck!

• The good news: there’s another way…

General SV goals…

• Aside: Why is Soundness so hard to achieve?

• Technical reasons

• Quiz time!

• Economic reasons

Contents

• Goals for Static Verification

• SPARK is… (and isn’t…)

• Verification - what and how

• Projects…

SPARK isn’t…

• SPARK ≠ Apache SPARK

and

• SPARK ≠ SPARC™

SPARK is…

• …a programming language,

• a set of static verification tools,

• a discipline for high-integrity software development

• All of the above.

SPARK is…
• SPARK design process:

• Start with Ada (remember this all started in 1987…)

• Soundness is #1 goal and non-negotiable.

• Remove all undefined and unspecified behaviour by subsetting and introduction of

“tighter” language rules. Aim for an unambiguous dynamic semantics.

• Cool side effect: SPARK just works for all compilers and target machines.

• Remove language features that defy verification.

• Add contracts to enable both efficiency and modularity of analysis.

• Build tools…try to sell them…and use them…

• Do research…make language bigger…make tools more powerful…repeat…Adopt

“good stuff” from Ada95, Ada2005, Ada2012…

The most important language

features that SPARK doesn’t have?

• No “Access Types” – aka “pointers” !!!

• No Heap…

• No “malloc” or “free”

• No garbage collection.

• oh..and no runtime library to support

any of the above…

Huh?!?!

No Pointers?!?!

• Yes…but…

• Low-level programming just works…
control of representation and data layout is
easy in SPARK and Ada.

• Composite types are first class and we
have high-level parameter passing modes.

• Pass-by-reference mechanism is
permitted for efficiency, but that’s OK and
doesn’t break anything…

No Pointers?!?!

• No heap -> predictable timing behaviour for real-

time/embedded systems. (nb most coding

standards for embedded/critical C say “no malloc”)

• Building linked data structures?

• use arrays and array index values as “pointers” –

works rather well!

• or…we have formal, generic container libraries.

No Pointers?!?!

• Implications for Verification…

• Massive simplification in modelling of
variables and their values – no need to model
“store” or “address” stuff…

• Calculation and verification of modsets is
trivial.

• Aliasing analysis is trivial (and sound in
P-time…)

• No need at all for a separation-logic. “Classic”
Hoare logic worked all along…

Why contracts?

• In C, consider, the following function prototype

declaration:

int Sqrt (int x);

• What does this mean? What does the function

promise to do? What is left un-stated?

Why contracts?
• In C, consider, the following function prototype

declaration:

int Sqrt (int x);

• Answer: not much. There is enough info here for the

compiler to know how to call Sqrt, but not much else!

• Moral: Don’t let compiler-writers design programming

languages! This trend has crippled program

verification for decades…

Why contracts?

• In SPARK 2014…

subtype Sqrt_Domain is Natural range 0 .. 1_000_000;

subtype Sqrt_Range is Natural range 0 .. 1_000;

procedure Sqrt (X : in Sqrt_Domain;

Y : out Sqrt_Range)

with

Global => (In_Out => Call_Count);

Why contracts?

• In SPARK 2014…going further…

subtype Sqrt_Domain is Natural range 0 .. 1_000_000;

subtype Sqrt_Range is Natural range 0 .. 1_000;

procedure Sqrt (X : in Sqrt_Domain;

Y : out Sqrt_Range)

with

Global => (In_Out => Call_Count),

Post => (Y * Y) <= X and

(Y + 1) * (Y + 1) > X;

Why contracts?

• Summary

• Contracts tell the verification system exactly what is

needed on the specification of a unit, not the body.

• They say what a unit does and doesn’t do.

• Contracts are the key to modularity, efficiency and

abstraction in verification.

Contents

• SPARK is… (and isn’t…)

• Goals for Static Verification

• Verification - what and how

• Projects…

Verification
• SPARK is designed to be amenable to many forms of verification

• Static

• Subset and “type checking”

• Data- and Information-flow analysis (essential to get rid of
uninitialised variables before “proof” can start).

• “Proof” - by generation verification conditions and then using a
theorem-prover.

• Worst-case memory-usage analysis.

• Worst-case execution-time analysis.

Verification
• SPARK is designed to be amenable to many forms of

verification

• Dynamic

• Testing, based on contracts. (like in Eiffel)

• Structural coverage analysis.

• Note - in SPARK 2014, contracts can be used statically

(for proof), dynamically (for test) or both. Allows “mixed

language” development and verification.

Verification
• What can be “proven”???

• “Type safety” - this really means:

• No undefined behaviour.

• No invalid data read or generated.

• No “exceptions” - i.e. buffer overflow, arithmetic

overflow, division by zero etc.

• Program “never crashes” for any input data and state.

Verification
• What can be “proven”???

• User-defined Assertions - anything you like!

• Partial correctness against Pre- and Post-conditions.

• Invariants (for types or package state)

• Top-level safety and/or security properties. (Really

just an assertion at the “main loop” level in your

program.)

Verification - How

• Under the hood - SPARK 2014

• SPARK 2014 is a complete reboot of the language

design and tooling, based on Ada2012…

• Tools are structured like a compiler, but with a very

different “back end.”

• “Front-end” is GNAT Pro Ada Compiler (GCC) and

AdaCore’s GPS IDE.

Verification - How

• “Middle-end”

• Expands language constructs - e.g. generics.

• Subset checking and extended legality rules.

• Information-flow analysis, based on Program

Dependence Graphs (PDGs).

• Translation to “Why3ML” language for proof.

Verification - How

• “Back-end”

• Why3 VC Generator

• Multiple “proof engines”, using SMTLib format

• CVC4, Alt-Ergo, Z3 provers…

• More to come…

• Oh…it’s all “FLOSS” (Freely Licensed/Open Source).

Contents

• SPARK is… (and isn’t…)

• Goals for Static Verification

• Verification - what and how

• Projects…

Projects

• Not an exhaustive list, but a selection of significant

projects, with data where available…

The first big

industrial SPARK project…

SHOLIS - 1995ish

SHOLIS - 1995ish

LM-130J - 1996-

Tokeneer - 2003-
• NSA-funded demonstrator for high-security software

engineering.

• Developed by Praxis (now Altran UK) in Bath.

• Fully formal “Correctness by Construction” development.

• Delivered about 10kloc SPARK. Zero bugs found by customer

until 2008.

• 2008 - Unprecedented open-source release of the entire project

archive.

• Only 4 or 5 bugs ever found since…

NATS iFACTS

2006-now

Before iFACTS…

After iFACTS…

NATS iFACTS

NATS iFACTS
• In full operational service since December 2011.

• About 250kloc SPARK

• Proved “type safe” (i.e. crash proof etc.) as a matter of course…

• 152,000 VCs. 98.76% discharged automatically by tools. Remainder

proved with user-defined lemmas, so 100% automation.

• Complete re-proof takes about 15 minutes on a standard PC, using

distributed persistent proof caching. i.e. we’re down to “coffee

break” for the whole system.

• Small changes are re-proved by developers before commit to CM

system.

SPARKSKein - 2010
• SPARK Reference Implementation of the “Skein” hash

algorithm - one of the (then) contenders to become SHA-3.

• Implementation is: fast, formal, proven, portable, and (we

think) readable.

• Debunks the myth that “formal is slow”.

• Released Open-Source.

• Also (en-passant) spotted a nasty corner-case overflow

bug in the designer’s own (C) reference implementation.

Muen - 2013

• Muen is a small separation kernel for x86_64

architecture.

• Proved type-safe and “crash proof”

• Open source

• Latest version now in SPARK 2014.

To end…

• Static Verification really does work!

• A disciplined mindset can bring huge benefits.

• Soundness enables us to modify later verification

activities (e.g. do less testing!). This can save lots of

money.

• Many industrial projects do this for real, right now.

Homework…

• Have a play…

• All the tools are GPL and freely available.

• (Support for Professors, too… :-))

• Download Muen, SPARKSkein, or Tokeneer and

see what you think.

Resources
• SPARK 2014 - www.spark-2014.org (including language definition, blog,

community projects page etc.)

• GPL tools: libre.adacore.com

• Tokeneer: www.adacore.com/tokeneer

• SPARKSkein: www.skein-hash.info

• Muen: muen.codelabs.ch

• Universities using SPARK: www.adacore.com/academia

• me: rod@proteancode.com

• SPARK Team in Bath: www.altran.co.uk

http://www.spark-2014.org
http://libre.adacore.com
http://www.adacore.com/tokeneer
http://www.skein-hash.info
http://muen.codelabs.ch
http://www.adacore.com/academia
mailto:rod@proteancode.com
http://www.altran.co.uk

