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Address Space Layout [Linux x86, no randomization]
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Stack Frame Layout [Linux x86]

args

Local vars

FP
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foo(int a, char* s) {

int x = 7, b[4] = {0,1,2,3};

…
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bufbuf

Basic Stack Exploit

void read_req(char *req) {

char buf[100];

strcpy(buf, req);

do-something(buf);

}

RA

FP

req
My insecure web server

strlen(req) < 100 strlen(req) = 108

Can crash app (DoS)

Can divert control flow

RA

FP

req
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Basic Stack Exploit

void read_req(char *req) {

char buf[100];

strcpy(buf, req);

do-something(buf);

}

My insecure web server

Shell
code

buf

RA

FP

req
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Heap-Based Attacks

• E.g., overwrite function pointers in the heap

buf[99]
…

buf[0]

fn_ptr

Shell
code

buf[99]
…

buf[0]

vtable

Shell
code
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Use After Free Attacks

• Freeing memory can create dangling pointers

• These can be used to leak memory contents and 

corrupt memory

int *p;

int foo() {

int a[4] = {1, 2, 3, 4};

p = a;

return a[0];

}

int bar() {

int a[4] = {42, 41, 40, 39};

return a[0];

}

int main() {

foo();

bar();

printf("*p = %d\n", *p);

}
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Use After Free Attacks

• Freeing memory can create dangling pointers

• These can be used to leak memory contents and 

corrupt memory

int main() {

int *p = malloc(1000);

*p = 100;

free(p);

int *q = malloc(1000);

*q = 42;

printf("*p = %d\n", *p);

return 0;

}
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Other types of attacks?

•Overwrite longjmp buffers

•Overwrite GOT and/or PLT

•Format string vulnerabilities 

• etc.
void read_req(int input) {

char auth, buf[128];

auth = check_credentials();

buf[input] = 1;

if (auth)

enter_privileged_mode();

}

•Sometimes a one-

byte overflow can 

be enough!
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Out-of-bounds reads

•Out-of-bounds writes can clearly be exploited by 

attackers

•What about  out-of-bounds reads?

1) OOB reads can leak private data

int main(int argc, char** argv) {

...

printf(argv[1]);

...

}
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Out-of-bounds reads

•Out-of-bounds writes can clearly be exploited by 

attackers

•What about  out-of-bounds reads?

1) OOB reads can leak private data

Heartbleed bug exploited OOB reads

An attacker could trick OpenSSL into allocating a 

64KB buffer and leak the contents of the victim's 

memory, 64KB at a time
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Out-of-bounds reads

•Out-of-bounds writes can clearly be exploited by 

attackers

•What about  out-of-bounds reads?

2) OOB reads can be used to divert control flow

void foo(int user_input) {

fun_ptrs valid_targets[100];

p[user_input]();

...

}
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Types of Attacks

1) Code corruption attacks

• Try to modify existing code in memory

• Code segment is marked as read-only, supported by all 

modern CPUs

2) Control-flow hijacking

• Corrupt code pointers/code data such as the return 

address, function pointers, etc.

3) Non-control-data attacks

• Corrupt any security-critical data other than code data

4) Leak confidential memory

• Also to find out critical info to conduct attacks 1) - 3)
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Defending directly against buffer overflows

• The root cause of many attacks are buffer overflows!

•Can we prevent them from happening in the first place?

• First line of defence: off-line program analysis tools

 Static analysis, symbolic execution, model checking, etc.

•Can we prevent them at run-time?

 One possibility is to compile code with a Safe C compiler

 But as we’ve seen, the runtime overhead is often prohibitive
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Partial defenses

void read_req(char *req) {

char buf[100];

strcpy(buf, req);

do-something(buf);

}

My insecure web server

Shell
code

buf

RA

FP

req

If we can’t eliminate  buffer overflows 

completely, are there any effective partial 

solutions?

NOP
slide
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Defense: Stack Canaries

• Add canaries to stack frames and verify 

their integrity prior to function return

•Need to recompile code, but no source 

modifications are needed and binary-

compatible with existing libs

• Small performance overhead: push 

canary value on function prologue, 

check integrity on epilogue

• Implemented as patches to gcc, Clang, 

MS compiler: enabled by default

args

Local vars

FP

RA

Canary

StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks

Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole,Peat Bakke, 

Steve Beattie, Aaron Grier, Perry Wagle and Qian Zhang, USENIX Security 1998
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Defense: Stack Canaries

Three types of canary values:

1) Terminator canaries: typically includes   

NULL(0x00)  CR(0x0d),    

LF(0x0a) EOF(0xff)

args

Local vars

FP

RA

Canary

Example attack:

• memcpy!
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Defense: Stack Canaries

Three types of canary values:

2) Random canaries: value chosen at 

load time

s1
s2

p
buf[99]

…
…

buf[0]

FP

RA

Canaryvoid read_req(char *s1, *s2) {

char *p;

char buf[100];     

strcpy(buf, s1);

strncpy(p, s2, 8);

}

Overwrite p to point to address of RA!

Example attack:



20

Defense: Stack Canaries

Three types of canary values:

3) Random XOR canaries: 

Canary = Rand-val XOR RA

s1
s2

p
buf[99]

…
…

buf[0]

FP

RA

Canaryvoid read_req(char *s1, *s2) {

char *p;

char buf[100];     

strcpy(buf, s1);

strncpy(p, s2, 8);

}

If RA was hacked, the check will fail
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Defense: Stack Canaries

Attacks against random (xor) canaries:

• Overwrite global variable holding 

random value?

 allocate canary table in separate 

R/O page

• Canary value may still leak

s1
s2

p
buf[99]

…
…

buf[0]

FP

RA

Canary
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Leaking Canary Value: Nginx attack (2013)

• Nginx: popular HTTP server and 

reverse proxy

• Thread pool architecture

• When a thread dies, a new one is 

spawned

buf

FP

RA

req

buf

FP

RA

req

buf

FP

RA

req
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Leaking Canary Value: Nginx attack (2013)

• Nginx: popular HTTP server and 

reverse proxy

• Sophisticated attack had to defeat 

various protection mechanisms, 

including stack canaries

buf

C

FP

RA

req

buf

C

FP

RA

req

buf

C

FP

RA

req
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Leaking Canary Value: Nginx attack (2013)

Attack against canaries: 

• Send request that only overwrites 

the stack canary:

• Response: canary value correct!

• How many tries?

buf

C

FP

RA

req

buf

C

FP

RA

req

buf

C

FP

RA

req
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Leaking Canary Value: Nginx attack (2013)

Attack against canaries: 

• Send request that overwrites one 

byte of the stack canary at a time:

• Reponse: byte correct!

• How many tries?

buf

C

FP

RA

req

buf

C

FP

RA

req

buf

C

FP

RA

req
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Defense: Non-executable Stack and Heap (W^X)

•Basic stack exploit requires code to run on the stack!

•Prevent overflow code execution by marking stack and 

heap segments as non-executable

•More generally, a page cannot be both W and X

 NX-bit on AMD, XD-bit on Intel

 NX bit in every Page Table Entry (PTE)

 Deployment examples (both 2004):

• Linux (via PaX project)

• Windows since XP SP2 (Data Execution Prevention: (DEP))

• Limitations:

 Some apps need executable heap (e.g. JITs)

 Does not defend against return-to-libc attacks
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Return-to-libc Attacks: use existing X pages!

args

Local vars

FP

RA

args

Local vars

FP

RA

system()

“/bin/sh”

libc.so

args

Local vars

RA

args

Local vars

FP

RA
exit()
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Return-Oriented Programming

Generalize to arbitrary code fragments ending in RET!

args

Local vars

FP

RA

args

Local vars

FP

RA

system()

“/bin/sh”

libc.so

args

Local vars

RA

args

Local vars

FP

RA
exit()
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Defense:  Address Space Layout Randomization

•Map code, stack and heap segments, as well as 
shared libraries to random locations in process 

memory

 Attacker does not know where e.g., system() lives!
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Address Space Layout [Linux x86, w/ ASLR]

User space

Stack

Heap

Text

Data

BSS

File mappings
(incl. libs)

Random stack offset

Random mmap offset

RLIMIT_STACK

Random brk offset

Random base offset
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Defeating ASLR with W^X 

• Approach 1: guessing location of ROP gadgets

 ASLR provides probabilistic protection

• Approach 2: leaking information about memory layout 

and location of ROP gadgets
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Preserving control and data integrity

• Ensure that control flow and memory accesses obey 

the intention of the code

•High-level idea:

 Compute a static over-approximation of allowed behaviours

 Flag any violations at runtime
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Control-Flow Integrity

• Attackers try to divert control flow by overwriting return 

addresses, overwriting function pointers, etc. 

• Key idea: compute a static overapproximation of 

allowable transfers

•Check for violations at runtime

Control-Flow Integrity Principles: Implementations, and Applications. 

Martiın Abadi, Mihai Budiu, Ulfar Erlingsson, Jay Ligatti.  

In Computer and Communications Security (CCS 2005)
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Control-Flow Integrity

• Attackers try to divert control flow by overwriting return 

addresses, overwriting function pointers, etc. 

• Key idea: compute a static overapproximation of 

allowable transfers

•Check for violations at runtime

…

foo()

...

…

foo()

...

foo:

...

...

...

...

return

Assume foo is only 

called from these 

two places

Example 1 (pseudo-code)
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Control-Flow Integrity

• Attackers try to divert control flow by overwriting return 

addresses, overwriting function pointers, etc. 

• Key idea: compute a static overapproximation of 

allowable transfers

•Check for violations at runtime

…

foo()

nop L1

…

foo()

nop L1

foo:

...

...

...

if *RA != nop L1 error()

return

Example 1 (pseudo-code)

Can implement 

nop L using x86 

prefetching
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Control-Flow Integrity

fp()

…

bar:

...

return

Example 2 (pseudo-code)

foo:

...

return

Assume fp can 

only call foo or bar,

Assume foo and 

bar are only called 

from this one place
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Control-Flow Integrity

fp()

nop L1

…

bar:

...

if *RA != nop L1 error()

return

Example 2 (pseudo-code)

foo:

...

if *RA != nop L1 error()

return

Assume fp can 

only call foo or bar,

Assume foo and 

bar are only called 

from this one place
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Control-Flow Integrity

if *fp != nop L2 error()

fp()

nop L1

…

bar:

nop L2

...

if *RA != nop L1 error()

return

Example 2 (pseudo-code)

foo:

nop L2

...

if *RA != nop L1 error()

return

Assume fp can 

only call foo or bar,

Assume foo and 

bar are only called 

from this one place
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CFI: Refinements 

if *fp1 != nop L1 error()

fp1() foo:

nop L1

bar:

nop L1

if *fp2 != nop L1 error()

fp2()

if *fp1 != nop L1 error()

fp1()

foo:

nop L1

bar:

nop L1if *fp2 != nop L2 error()

fp2() bar2:

nop L2
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Write Integrity Testing (WIT)

•CFI cannot prevent against non-control-data attacks

• Key idea: for each write, compute a static over-

approximation of possible write targets

•Check for violations at runtime

void read_req(int input) {

char auth, buf[128];

auth = check_credentials();

buf[input] = 1;

if (auth)

enter_privileged_mode();

}

Preventing memory error exploits with WIT.

Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, Miguel Castro

In IEEE Symposium on Security and Privacy (S&P 2008)
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Write Integrity Testing (WIT)

•WIT first performs a static points-to analysis that for 

each unsafe write (via a pointer) computes the set of 

objects which it may access

• All objects in the same set are given a unique color (lD)

• The same color is assigned to the write instruction

•Color sets are merged if there are objects in common 

until a fixed point is reached

• The color of each memory byte is recorded in a table

 We use shadow memory
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WIT: Example

void read_req(int input) {

char auth, buf[128];

auth = check_credentials();

buf[input] = 1;

if (auth)

enter_privileged_mode();

}

if (color(buf+input) != green) error();
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Data-Flow Integrity (DFI)

• Key idea: for each read, compute a static over-

approximation of possible instructions that wrote it

•Check for violations at runtime

•Can also catch out-of-bounds reads

• This static over-approximation is given by a standard 

reaching definitions data-flow analysis

Securing software by enforcing data-flow integrity

Miguel Castro, Manuel Costa, Tim Harris

In Symposium on OS Design and Implementation (OSDI 2006)
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DFI: Example

1: void read_req(int input) {

2:    char auth, buf[128];

3:    auth = check_credentials();

4:    buf[input] = 1;  

5:    if (auth)

6:        enter_privileged_mode();

7: }
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DFI: Example

1: void read_req(int input) {

2:    char auth, buf[128];

store[&auth] = 3

3:    auth = check_credentials();

store[&buf[input]] = 4

4:    buf[input] = 1;

if (store[&auth] != 3) error();

5:    if (auth)

6:        enter_privileged_mode();

7: }

Unsafe writes need to be instrumented too, to protect the 

DFI shadow memory
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CFI, WIT, DFI: Performance

CFI WIT DFI

Average 16 10 104

Max 45 25 155

Approximate numbers, as reported by the papers
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Basic Security Game

Defense 1

Attack 1 Defense 2

Defense …

…

Attack A

Attack B

Attack …

…
Defense X

Defense Y

Defense …

…

…

…



53

Software Security: Attacks and Defenses

•Designing effective security solutions is hard

• Asymmetrical fight:

 Attacker: can exploit any code, in any way

 Defender: needs to prevent all possible attacks

• In practice, there are rarely universal defenses

 But each extra defense reduces attack opportunities, and 

makes some attacks harder


