
Introduction to Program

Analysis for Security

Cristian Cadar
c.cadar@imperial.ac.uk

Software Reliability Course

Autumn 2016

2

Address Space Layout [Linux x86, no randomization]

KernelKernel space
(1 GB)

User space
(3 GB)

Stack

Heap

0x08048000
Text

Data

BSS

File mappings
(incl. libs)

0xC0000000

0x40000000

3

Stack Frame Layout [Linux x86]

args

Local vars

FP

RA

0xabcdabcd

0x81818181

10

foo(int a, char* s) {

int x = 7, b[4] = {0,1,2,3};

…

a

0xdeadbeef

7

3

2

1

0

s

b[3]

x

b[0]

b[1]

b[2]

SP

FP

4

bufbuf

Basic Stack Exploit

void read_req(char *req) {

char buf[100];

strcpy(buf, req);

do-something(buf);

}

RA

FP

req
My insecure web server

strlen(req) < 100 strlen(req) = 108

Can crash app (DoS)

Can divert control flow

RA

FP

req

5

Basic Stack Exploit

void read_req(char *req) {

char buf[100];

strcpy(buf, req);

do-something(buf);

}

My insecure web server

Shell
code

buf

RA

FP

req

7

Heap-Based Attacks

• E.g., overwrite function pointers in the heap

buf[99]
…

buf[0]

fn_ptr

Shell
code

buf[99]
…

buf[0]

vtable

Shell
code

8

Use After Free Attacks

• Freeing memory can create dangling pointers

• These can be used to leak memory contents and

corrupt memory

int *p;

int foo() {

int a[4] = {1, 2, 3, 4};

p = a;

return a[0];

}

int bar() {

int a[4] = {42, 41, 40, 39};

return a[0];

}

int main() {

foo();

bar();

printf("*p = %d\n", *p);

}

9

Use After Free Attacks

• Freeing memory can create dangling pointers

• These can be used to leak memory contents and

corrupt memory

int main() {

int *p = malloc(1000);

*p = 100;

free(p);

int *q = malloc(1000);

*q = 42;

printf("*p = %d\n", *p);

return 0;

}

10

Other types of attacks?

•Overwrite longjmp buffers

•Overwrite GOT and/or PLT

•Format string vulnerabilities

• etc.
void read_req(int input) {

char auth, buf[128];

auth = check_credentials();

buf[input] = 1;

if (auth)

enter_privileged_mode();

}

•Sometimes a one-

byte overflow can

be enough!

11

Out-of-bounds reads

•Out-of-bounds writes can clearly be exploited by

attackers

•What about out-of-bounds reads?

1) OOB reads can leak private data

int main(int argc, char** argv) {

...

printf(argv[1]);

...

}

12

Out-of-bounds reads

•Out-of-bounds writes can clearly be exploited by

attackers

•What about out-of-bounds reads?

1) OOB reads can leak private data

Heartbleed bug exploited OOB reads

An attacker could trick OpenSSL into allocating a

64KB buffer and leak the contents of the victim's

memory, 64KB at a time

13

Out-of-bounds reads

•Out-of-bounds writes can clearly be exploited by

attackers

•What about out-of-bounds reads?

2) OOB reads can be used to divert control flow

void foo(int user_input) {

fun_ptrs valid_targets[100];

p[user_input]();

...

}

14

Types of Attacks

1) Code corruption attacks

• Try to modify existing code in memory

• Code segment is marked as read-only, supported by all

modern CPUs

2) Control-flow hijacking

• Corrupt code pointers/code data such as the return

address, function pointers, etc.

3) Non-control-data attacks

• Corrupt any security-critical data other than code data

4) Leak confidential memory

• Also to find out critical info to conduct attacks 1) - 3)

15

Defending directly against buffer overflows

• The root cause of many attacks are buffer overflows!

•Can we prevent them from happening in the first place?

• First line of defence: off-line program analysis tools

 Static analysis, symbolic execution, model checking, etc.

•Can we prevent them at run-time?

 One possibility is to compile code with a Safe C compiler

 But as we’ve seen, the runtime overhead is often prohibitive

16

Partial defenses

void read_req(char *req) {

char buf[100];

strcpy(buf, req);

do-something(buf);

}

My insecure web server

Shell
code

buf

RA

FP

req

If we can’t eliminate buffer overflows

completely, are there any effective partial

solutions?

NOP
slide

17

Defense: Stack Canaries

• Add canaries to stack frames and verify

their integrity prior to function return

•Need to recompile code, but no source

modifications are needed and binary-

compatible with existing libs

• Small performance overhead: push

canary value on function prologue,

check integrity on epilogue

• Implemented as patches to gcc, Clang,

MS compiler: enabled by default

args

Local vars

FP

RA

Canary

StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks

Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole,Peat Bakke,

Steve Beattie, Aaron Grier, Perry Wagle and Qian Zhang, USENIX Security 1998

18

Defense: Stack Canaries

Three types of canary values:

1) Terminator canaries: typically includes

NULL(0x00) CR(0x0d),

LF(0x0a) EOF(0xff)

args

Local vars

FP

RA

Canary

Example attack:

• memcpy!

19

Defense: Stack Canaries

Three types of canary values:

2) Random canaries: value chosen at

load time

s1
s2

p
buf[99]

…
…

buf[0]

FP

RA

Canaryvoid read_req(char *s1, *s2) {

char *p;

char buf[100];

strcpy(buf, s1);

strncpy(p, s2, 8);

}

Overwrite p to point to address of RA!

Example attack:

20

Defense: Stack Canaries

Three types of canary values:

3) Random XOR canaries:

Canary = Rand-val XOR RA

s1
s2

p
buf[99]

…
…

buf[0]

FP

RA

Canaryvoid read_req(char *s1, *s2) {

char *p;

char buf[100];

strcpy(buf, s1);

strncpy(p, s2, 8);

}

If RA was hacked, the check will fail

21

Defense: Stack Canaries

Attacks against random (xor) canaries:

• Overwrite global variable holding

random value?

 allocate canary table in separate

R/O page

• Canary value may still leak

s1
s2

p
buf[99]

…
…

buf[0]

FP

RA

Canary

22

Leaking Canary Value: Nginx attack (2013)

• Nginx: popular HTTP server and

reverse proxy

• Thread pool architecture

• When a thread dies, a new one is

spawned

buf

FP

RA

req

buf

FP

RA

req

buf

FP

RA

req

23

Leaking Canary Value: Nginx attack (2013)

• Nginx: popular HTTP server and

reverse proxy

• Sophisticated attack had to defeat

various protection mechanisms,

including stack canaries

buf

C

FP

RA

req

buf

C

FP

RA

req

buf

C

FP

RA

req

24

Leaking Canary Value: Nginx attack (2013)

Attack against canaries:

• Send request that only overwrites

the stack canary:

• Response: canary value correct!

• How many tries?

buf

C

FP

RA

req

buf

C

FP

RA

req

buf

C

FP

RA

req

25

Leaking Canary Value: Nginx attack (2013)

Attack against canaries:

• Send request that overwrites one

byte of the stack canary at a time:

• Reponse: byte correct!

• How many tries?

buf

C

FP

RA

req

buf

C

FP

RA

req

buf

C

FP

RA

req

26

Defense: Non-executable Stack and Heap (W^X)

•Basic stack exploit requires code to run on the stack!

•Prevent overflow code execution by marking stack and

heap segments as non-executable

•More generally, a page cannot be both W and X

 NX-bit on AMD, XD-bit on Intel

 NX bit in every Page Table Entry (PTE)

 Deployment examples (both 2004):

• Linux (via PaX project)

• Windows since XP SP2 (Data Execution Prevention: (DEP))

• Limitations:

 Some apps need executable heap (e.g. JITs)

 Does not defend against return-to-libc attacks

27

Return-to-libc Attacks: use existing X pages!

args

Local vars

FP

RA

args

Local vars

FP

RA

system()

“/bin/sh”

libc.so

args

Local vars

RA

args

Local vars

FP

RA
exit()

28

Return-Oriented Programming

Generalize to arbitrary code fragments ending in RET!

args

Local vars

FP

RA

args

Local vars

FP

RA

system()

“/bin/sh”

libc.so

args

Local vars

RA

args

Local vars

FP

RA
exit()

29

Defense: Address Space Layout Randomization

•Map code, stack and heap segments, as well as
shared libraries to random locations in process

memory

 Attacker does not know where e.g., system() lives!

33

Address Space Layout [Linux x86, w/ ASLR]

User space

Stack

Heap

Text

Data

BSS

File mappings
(incl. libs)

Random stack offset

Random mmap offset

RLIMIT_STACK

Random brk offset

Random base offset

36

Defeating ASLR with W^X

• Approach 1: guessing location of ROP gadgets

 ASLR provides probabilistic protection

• Approach 2: leaking information about memory layout

and location of ROP gadgets

37

Preserving control and data integrity

• Ensure that control flow and memory accesses obey

the intention of the code

•High-level idea:

 Compute a static over-approximation of allowed behaviours

 Flag any violations at runtime

38

Control-Flow Integrity

• Attackers try to divert control flow by overwriting return

addresses, overwriting function pointers, etc.

• Key idea: compute a static overapproximation of

allowable transfers

•Check for violations at runtime

Control-Flow Integrity Principles: Implementations, and Applications.

Martiın Abadi, Mihai Budiu, Ulfar Erlingsson, Jay Ligatti.

In Computer and Communications Security (CCS 2005)

39

Control-Flow Integrity

• Attackers try to divert control flow by overwriting return

addresses, overwriting function pointers, etc.

• Key idea: compute a static overapproximation of

allowable transfers

•Check for violations at runtime

…

foo()

...

…

foo()

...

foo:

...

...

...

...

return

Assume foo is only

called from these

two places

Example 1 (pseudo-code)

40

Control-Flow Integrity

• Attackers try to divert control flow by overwriting return

addresses, overwriting function pointers, etc.

• Key idea: compute a static overapproximation of

allowable transfers

•Check for violations at runtime

…

foo()

nop L1

…

foo()

nop L1

foo:

...

...

...

if *RA != nop L1 error()

return

Example 1 (pseudo-code)

Can implement

nop L using x86

prefetching

41

Control-Flow Integrity

fp()

…

bar:

...

return

Example 2 (pseudo-code)

foo:

...

return

Assume fp can

only call foo or bar,

Assume foo and

bar are only called

from this one place

42

Control-Flow Integrity

fp()

nop L1

…

bar:

...

if *RA != nop L1 error()

return

Example 2 (pseudo-code)

foo:

...

if *RA != nop L1 error()

return

Assume fp can

only call foo or bar,

Assume foo and

bar are only called

from this one place

43

Control-Flow Integrity

if *fp != nop L2 error()

fp()

nop L1

…

bar:

nop L2

...

if *RA != nop L1 error()

return

Example 2 (pseudo-code)

foo:

nop L2

...

if *RA != nop L1 error()

return

Assume fp can

only call foo or bar,

Assume foo and

bar are only called

from this one place

44

CFI: Refinements

if *fp1 != nop L1 error()

fp1() foo:

nop L1

bar:

nop L1

if *fp2 != nop L1 error()

fp2()

if *fp1 != nop L1 error()

fp1()

foo:

nop L1

bar:

nop L1if *fp2 != nop L2 error()

fp2() bar2:

nop L2

45

Write Integrity Testing (WIT)

•CFI cannot prevent against non-control-data attacks

• Key idea: for each write, compute a static over-

approximation of possible write targets

•Check for violations at runtime

void read_req(int input) {

char auth, buf[128];

auth = check_credentials();

buf[input] = 1;

if (auth)

enter_privileged_mode();

}

Preventing memory error exploits with WIT.

Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, Miguel Castro

In IEEE Symposium on Security and Privacy (S&P 2008)

46

Write Integrity Testing (WIT)

•WIT first performs a static points-to analysis that for

each unsafe write (via a pointer) computes the set of

objects which it may access

• All objects in the same set are given a unique color (lD)

• The same color is assigned to the write instruction

•Color sets are merged if there are objects in common

until a fixed point is reached

• The color of each memory byte is recorded in a table

 We use shadow memory

47

WIT: Example

void read_req(int input) {

char auth, buf[128];

auth = check_credentials();

buf[input] = 1;

if (auth)

enter_privileged_mode();

}

if (color(buf+input) != green) error();

48

Data-Flow Integrity (DFI)

• Key idea: for each read, compute a static over-

approximation of possible instructions that wrote it

•Check for violations at runtime

•Can also catch out-of-bounds reads

• This static over-approximation is given by a standard

reaching definitions data-flow analysis

Securing software by enforcing data-flow integrity

Miguel Castro, Manuel Costa, Tim Harris

In Symposium on OS Design and Implementation (OSDI 2006)

49

DFI: Example

1: void read_req(int input) {

2: char auth, buf[128];

3: auth = check_credentials();

4: buf[input] = 1;

5: if (auth)

6: enter_privileged_mode();

7: }

50

DFI: Example

1: void read_req(int input) {

2: char auth, buf[128];

store[&auth] = 3

3: auth = check_credentials();

store[&buf[input]] = 4

4: buf[input] = 1;

if (store[&auth] != 3) error();

5: if (auth)

6: enter_privileged_mode();

7: }

Unsafe writes need to be instrumented too, to protect the

DFI shadow memory

51

CFI, WIT, DFI: Performance

CFI WIT DFI

Average 16 10 104

Max 45 25 155

Approximate numbers, as reported by the papers

52

Basic Security Game

Defense 1

Attack 1 Defense 2

Defense …

…

Attack A

Attack B

Attack …

…
Defense X

Defense Y

Defense …

…

…

…

53

Software Security: Attacks and Defenses

•Designing effective security solutions is hard

• Asymmetrical fight:

 Attacker: can exploit any code, in any way

 Defender: needs to prevent all possible attacks

• In practice, there are rarely universal defenses

 But each extra defense reduces attack opportunities, and

makes some attacks harder

