
Safe C Compilers

Cristian Cadar
c.cadar@imperial.ac.uk

Software Reliability Course

Autumn 2016

2

Defending against buffer overflows

• The root cause of many critical bugs and security attacks

are buffer overflows!

•Can we prevent them from happening in the first place?

• First line of defence: off-line program analysis tools

 static analysis, symbolic execution, model checking, etc.

•Can we prevent them at run-time?

 sure, use memory-safe languages like Java!

 but they are not a good fit for systems programming and

performance can be an issue too

 significant part of our computing base (operating systems, network

servers, compilers, office utilities, etc.) is written in C/C++

3www.tiobe.com

TIOBE index: 2001-present

Most network-facing

security-critical code
written in C!

4

Can we prevent buffer overflows in C at runtime?

• Safe C compilers

 Instrument the program with dynamic checks to detect illegal

memory accesses

 When a buffer overflow is detected, program is terminated

• First attempts: fat pointers BCC [Usenix 1983], RTCC

[SP&E 1992]

 Disadvatages?

0xdeadbeef

ptr

0xdeadbeef start_addr end_addr

ptr

5

Fat pointers: disadvantages

0xdeadbeef

ptr

0xdeadbeef start_addr end_addr

ptr

1) Increases runtime performance
•Note that pointers don’t fit into a single register anymore

2) Increases memory consumption

3) Breaks assumption about pointer size

4) Loses checks when converted to integers and back

void *p = &main;

long hash = (long) p | 3;

void *q = (void*)(hash & ~3);

6

Fat pointers: interacting with uninstrumented code

0xdeadbeef

ptr

0xdeadbeef start_addr end_addr

ptr

5) Biggest showstopper in practice

•Would need to always link against instrumented libraries,

so everyone would need to adopt this at once

•Would also need to worry about the interaction with OS

and hardware (system calls, DMA controller, etc.)

7

Fat pointers: interacting with uninstrumented code

0xdeadbeef

ptr

0xdeadbeef start_addr end_addr

ptr

// uninstrumented

int bar(int *p, int* q) {

...

}

// instrumented

int *a, *b, r;

r = bar(a, b);

// instrumented

char* foo(char* p) {

...

}

// uninstrumented

char *a, *b;

a = foo(b);

8

Backwards-Compatible Safe C compilers

• Introduced by Imperial’s Jones and Kelly

•Does not change the pointer representation

 Fully compatible with uninstrumented code

Backward-compatible bounds checking for arrays and pointers in C programs.

Richard Jones and Paul Kelly, International Workshop on Automated and
Algorithmic Debugging (AADEBUG 1997)

9

Jones and Kelly compiler

p = malloc(16)

Address

Space

Start End

16 32

r = malloc(16)

q = p + 4

Object table

Start End

16 32

40 56
s = r + 20

The result of pointer arithmetic must preserve

the referent object, and not overflow it!

Basic rule to check

16 32 40 56

10

Jones and Kelly compiler

p = malloc(16)

Address

Space

r = malloc(16)

q = p + 4

s = r + 20 INVALID

t = q + 28

16 32 40 56

The result of pointer arithmetic must preserve

the referent object, and not overflow it!

Basic rule to check

Start End

16 32

Object table

Start End

16 32

40 56

11

Jones and Kelly compiler

p = malloc(16)

Address

Space

r = malloc(16)

q = p + 4

s = r + 20 INVALID

t = q + 28

*t = 1;

ERROR!

16 32 40 56

The result of pointer arithmetic must preserve

the referent object, and not overflow it!

Basic rule to check

Start End

16 32

Object table

Start End

16 32

40 56

12

Implementing the object table functionality

•Range checks need to be fast!

•Must exploit temporal and spatial locality of memory

accesses

• J&K use a splay tree, a binary search tree with the

property that recently accessed elements are quick to

retrieve again

13

Passing pointers between instrumented and

uninstrumented code

High-level design decision

Is it better to have false positives or false negatives?

False positives means valid programs stop with an error

False negatives means buffer overflow goes undetected

14

Passing pointers between instrumented and

uninstrumented code (1)

• Passing pointer from instrumented to uninstrumented

 Works seamlessly as pointer representation is not changed

 Errors in uninstrumented code will be missed

• Trusted libraries can be left unchecked for performance reasons

(but see next)

15

Passing pointers between instrumented and

uninstrumented code (2)

• Passing pointer from uninstrumented to instrumented

 Out-of-bounds pointer?

• Points to unallocated space

 Won’t find it in the object table, so don’t check

 But flag cases in which such a pointer is used to derive a pointer to a

registered object

• Points to another object

 Some checks may pass

 But an error issued if used to derive a pointer to a different object or

unallocated space

 In-bounds pointer?

• Allocation site uninstrumented?

 Don’t check but flag cases in which the pointer is used to derive a

pointer to a registered object

• Allocation site instrumented? (malloc’ed sites always instrumented!)

 Check as usual

16

Conversion between pointers and integers

void *p = &main;

long hash = (long) p | 3;

void *q = (void*)(hash & ~3);
Complication:

 Conversion between pointers and integers

 Similar to pointers coming from unchecked code

 May lose checks

APPROVED…

17

char buf[100], *p;

while (p < &buf[100])

*p = 1;

One past the end…

Complication:

 It is legal in C to have a pointer one past the end of the array

 Change alloc behavior to add (at least) one-byte padding b/w objects

 What about function parameters?

APPROVED

• No padding, for backward compatibility

• Possible missed bugs

• Possible false positives if pointer one past the end is brought

back in-bounds

• But rare to pass arrays, so minor concern in practice

18

One past the end…

•Deriving a pointer more than one past the end is

undefined behaviour

 And compilers could take advantage of this in arbitrary ways,

as we have seen in previous lectures

• But a study by Ruwase and Lam in 2004 on 20

benchmarks, 1.2M LOC found that 60% of programs

contain such violations

•Can this behaviour be supported?

A practical dynamic buffer overflow compiler. Olatunji Ruwase and Monica Lam,

Annual Network and Distributed System Security Symposium (NDSS 2004)

19

Compatibility experiment [CRED paper]

20

Jones & Kelly compiler

p = malloc(16)

Address

Space

Start End

16 32

q = p + 4 Object table

Start End

16 32

40 56

INVALIDt = q + 28

*u = 1;

u = t - 28

ERROR!

21

CRED compiler

p = malloc(16)

Address

Space

Start End

16 32

q = p + 4 Object table

Start End

16 32

40 56

48t = q + 28

*u = 1;

u = t - 28

During pointer arithmetic, check if pointer

points to OOB obj. If so, use its stored value.

OOB obj

22

CRED compiler

p = malloc(16)

Address

Space

Start End

16 32

q = p + 4 Object table

Start End

16 32

40 56

48t = q + 28

*u = 1;

u = t - 28

If pointer arithmetic brings the pointer in-bounds,

switch back to standard pointer representation

OOB obj

23

CRED vs J&K

1) Compatibility implications: passing out-of-bounds to

uninstrumented code would incorrectly pass the

OOB address

 Not seen in any of the benchmarks

2) Extra memory consumption due to OOB objects

 OOB objects stored in a hash table

 When a memory object is deallocation, all OOB

objects referring to it are also deallocated

3) Extra runtime overhead

 Shown to introduce negligible additional overhead in most

cases, except for 15% slowdown compared to J&K in tar

24

Performance

•Despite optimizations, J&K/CRED compiler introduces

a large slowdown

 5-6x on the original benchmarks (Tcl/Tk, Ghostscript,

GCC, MicroEmacs)

 But acceptable (<26%) on other benchmarks (coreutils,

tar, wu-ftpd, etc.)

•CRED authors argues for a version which protects

only char* pointers

 ssh overhead goes down from 12x to <26%

25

CRED performance

26

Boundless-Memory Blocks

•Detection critical, but not the whole story

 Terminating the program can be extremely disruptive

 In some cases, early benign overflows can completely

disable execution under Safe C compilers

 Doesn’t avoid denial of service attacks

•Focus on availability / continued execution

27

Boundless Memory Blocks Compiler

•Use a Safe C compiler to detect all out of bounds

accesses

• Store out of bounds writes in a hash table

•Retrieve out of bounds reads from the hash table

•Conceptually give each allocated memory block its

own address space and unbounded size

A Dynamic Technique for Eliminating Buffer Overflow Vulnerabilities (and Other

Memory Errors). Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel Roy,
Tudor Leu. Annual Computer Security Applications Conference (ACSAC 2004)

28

Our Philosophy

Block1 Block2 Block3 Block4

Block1
… …

Block2
… …

Block3
… …

..

.

densesparse sparse

29

BMB Compiler (cont.)

Address

Space

p = malloc(10)

*(p+15) = 100

30

BMB Compiler (cont.)

Base block Offset
*(p+15) = 100

Address

Space

Value

10015

31

BMB Compiler (cont.)

v += *(p+15)

Address

Space

Base block Offset Value

10015

32

Possible problems

•New DOS attack

Craft an input which causes a large number of writes

Solution: treat the hash table as a fixed-size cache

• LRU replacement policy

• Never observed a case in which the code attempts to

access a discarded write entry

•Cache Misses and Uninitialized Reads

Returns a default value

Absent in most applications

33

Evaluation

• Acquired several open source programs

 Servers: Apache, Sendmail

 Mailers: Pine, Mutt

 Utilities: Midnight Commander

• Acquired publicized buffer overflow security vulnerabilities

 SecuriTeam, Security Focus

34

Vulnerabilities – Pine 4.44

35

Vulnerabilities – Apache 2.0.47

• Apache can redirect some URLs, which are specified

by regular expressions

• Example: redirect URLs of the form

http://myhost.mydomain/D_(1*)_(2*)_(3*)_(4*) to URLs of the

form http://myhost.mydomain/documents/input=$1_$2_$3_$4

http://myhost.mydomain/D_(1*)_(2*)_(3*)_(4*)
http://myhost.mydomain/documents/input=$1_$2_$3_$4

36

Vulnerabilities – Apache 2.0.47

D_(1*)_(2*)_(3*)_(4*)

Static buffer contains space for only 10 parenthesized captures!

37

Vulnerabilities – Mutt 1.4

IMAP.mail.folder.UTF-8 IMAP.mail.folder.UTF-7

IMAP ServerMutt

•Mutt assumes the UTF-7 string can be at most 2 times

longer

•Worst increase ratio is in fact larger

38

Evaluation (cont.)

• Three versions per benchmark

• Standard Compilation (GCC)

• Bounds Check Compilation (CRED)

• Boundless Memory Blocks Compilation (BMB)

• Tested each versions on the acquired vulnerabilities

39

Results

Pine

MC

Mutt

Sendmail

Apache

Secure Initializes
Continues

Correctly

Correct

For Attack

40

Discussion

•Why it works
 Developers more likely to incorrectly calculate the size of a

buffer or omit a bounds check

 Cache misses and uninitialized reads are rare
• Only MC contained some uninitialized reads

•Why it makes sense
 When allocating memory, hard to reason about the worst

case, which is usually exploited by security attacks

 Although the programmer failed to allocate enough space,
the program usually correct when provided with
(conceptually) unbounded memory blocks.

41

Extensible Arrays

•Many languages (e.g. Java) provide extensible arrays

• BMB

 Preservation of the address space from the original

implementation

 Efficiency – allocates only elements which are actually

accessed

42

Summary

• Safe C compilers aim to create a memory-safe version of C

 First generation used fat pointers, which breaks compatibility with

unchecked code

 Second generation does not change pointer representation,

ensuring backward-compatibility with unchecked code

• We studied three Safe C compilers:

 Jones & Kelly: First backward-compatible compiler for standard-

compliant programs

 CRED: allows out-of-bounds pointers for better compatibility with

existing code

 BMB: provides automatically extensible memory blocks, to allow

continued execution

• While these compilers generate code that incurs acceptable

overhead for some applications, they are overall impractical

for use in production (but useful for offline testing)

