
Compiler Testing

Cristian Cadar

Slides by Alastair Donaldson

Software Reliability Course

Autumn 2016

2

Importance of compiler reliability

We rely on reliable compilers for:

- Day-to-day programming

- Source code analysis

- IR-level analysis

Compilers are complex pieces of software and

contain bugs

Let’s look at two methods for testing them

Are source- or IR-

based verification

techniques meaningful

if the compiler

misbehaves?

3

Random differential testing

Generate random

programs

Try them with many

compilers

Result mismatches

indicate bugs

24

Random.c

gcc clang
Microsoft

compiler

Intel

compiler

24 2442

Pioneered by Csmith, University of Utah

(PLDI’11)

4

Compiler testing and undefined behaviour

The mismatch is not erroneous

if Random.c exercises

undefined behaviour

If an execution exercises undefined behaviour, the

entire execution has no meaning

Any result is acceptable

24

Random.c

gcc clang

42

5

Compiler testing and undefined behaviour

Random differential testing requires programs that are

free from undefined behaviour

Csmith aims to guarantee this via careful generation,

and “safe math” macros

E.g., instead of generating: e1/e2 (e1, e2 unsigned)

generate safe_div(e1, e2) defined as follows:

#define safe_div(e1, e2) \
((e2) == 0 ? (e1) : (e1) / (e2))

6

Equivalence modulo

inputs testing

P

I

Statements

covered

by I

Statements

not covered by I

Partitioning of P

Program

Input
D

P P1 P2 P3
From make … differing

only in D

compiler

Le et al. PLDI’14

compiler compiler compiler compiler

24 24 2442 Execute on I

Single compiler

Mismatches indicate bugs

profiler

An example of

metamorphic testing

7

An open problem in compiler testing:

floating-point

Optimisations in the presence of floating-point operations

can change the results of programs

Compilers typically run in one of three modes:

- Strict: allow no such optimisations

- Excess precision: allow optimisations that increase

the precision of operations

- “Fast math”: allow optimisations that assume

algebraic laws that do not hold for floating-point

8

Excess precision example

Computing a + b * c in 32-bit floating-point usually

involves:
- Computing b * c, rounding result to 32-bit value t

- Computing a + t, rounding result to 32-bit value

Many architectures support fused multiply-add instruction,
fma(a, b, c), which computes a + b * c in one

step, with a single rounding

This can lead to faster and more precise computation

Transforming a + b * c to fma(a, b, c) can be a

useful compiler optimisation

But it may change what the program computes!

9

“Fast math” example

Floating-point multiplication is not associative:
(a*b)*c == a*(b*c) does not hold in general

Other algebraic identities do not hold, e.g. we can have
x + y == x without y being 0

“Fast math” mode: compiler pretends floating-point

operators do satisfy algebraic laws of real numbers

E.g., the compiler might optimise

x = x*x*x*x*x*x*x*x;

to
x *= x; x *= x; x *= x;

Faster, but for some values of x changes the result

Desirable in domains such as gaming where bit-precise

results are not important

10

OpenCV Results

• Crosschecked 51 SIMD-optimized versions

against their reference scalar implementations

• Found mismatches in 10

• Most mismatches due to tricky FP-related issues:

• Precision

• Rounding

• Associativity

• Distributivity

• NaN values

[EuroSys 2011]

11

OpenCV Results

Surprising find: min/max not commutative nor associative!

min(a,b) = a < b ? a : b

a < b (ordered) always returns false if one
of the operands is NaN

min(NaN, 5) = 5
min(5, NaN) = NaN

min(min(5, NaN), 100) = min(NaN, 100) = 100
min(5, min(NaN, 100)) = min(5, 100) = 5

11

12

Why are floating-point optimisations hard

to test?

Random differential testing and EMI testing require

checking whether results are identical

How can we distinguish between result differences due to:

- a compiler bug

vs.

- excess precision or “fast math” optimisations?

This is the subject of on-going work

13

Summary

Compilers bugs undermine program analysis efforts

Random differential testing and EMI testing are successful

methods for testing compilers

Compiler testing is hard in the presence of floating-point

