
Software Reliability

Lecture 12

Compilers and Undefined

Behaviour

Alastair Donaldson

www.doc.ic.ac.uk/~afd

2

Agenda

Examples of undefined behaviours, and surprising

interaction with compiler optimisations

Undefined behaviour from the compiler’s perspective

Impact of compilers and undefined behaviour on

program analysis

3

Sources

• John Regehr: “A Guide to Undefined Behaviour in

C and C++, Part 1”,

http://blog.regehr.org/archives/213

• Xi Wang Haogang Chen Alvin Cheung Zhihao Jia,

Nickolai Zeldovich M. Frans Kaashoek:

“Undefined Behavior: What Happened to My

Code?”, ApSys 2012

• Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek,

Armando Solar-Lezama: “Towards Optimization-

Safe Systems: Analyzing the Impact of Undefined

Behavior”, SOSP 2013

• The gcc and clang compilers

4

Example: saturating add

Let’s try to implement saturating addition for signed

integers in C

x + y is clamped to an extreme value if it falls outside

the signed integer range

int saturating_add(int x, int y) {

if(x > 0 && y > 0 && x + y < 0)

return INT_MAX;

if(x < 0 && y < 0 && x + y > 0)

return INT_MIN;

return x + y;

}

5

Saturating add in action

Compiled with gcc 4.9.3, -O0, we get:

saturating_add(1, 2) == 3

saturating_add(-5, 2) == -3

saturating_add(1000000000, 1000000000) == 2000000000

saturating_add(2000000000, 2000000000) == 2147483647

saturating_add(-2000000000, -2000000000) == -2147483648

saturating_add(1, 2) == 3

saturating_add(-5, 2) == -3

saturating_add(1000000000, 1000000000) == 2000000000

saturating_add(2000000000, 2000000000) == -294967296

saturating_add(-2000000000, -2000000000) == 294967296

Compiled with gcc 4.9.3, -O2, we get:

Intended saturating

behaviour (32-bit)

This looks like wrap-

around behaviour!

6

Saturating addition: which results are

correct?

Without optimisations, we got:

With optimisations, we got:

Which is right?

Both: the behaviour of a C program is undefined for

inputs than can cause signed arithmetic overflow

Technically, it would also be fine for the program to print
“Gotcha!”, or exhibit any other behaviour

Exercise: implement saturating add without invoking

undefined behaviour

saturating_add(2000000000, 2000000000) == 2147483647

saturating_add(2000000000, 2000000000) == -294967296

7

Let’s implement a guarded abs

void print_abs(int x) {

if(abs(x) < 0) {

printf("Could not compute abs of %d\n", x);

return;

}

printf("abs of %d is %d\n", x, abs(x));

}

Compiled with gcc 4.9.3, -O0, we get:
print_abs(100) -> abs of 100 is 100

print_abs(-100) -> abs of -100 is 100

print_abs(-2147483648) -> Could not compute abs of -2147483648

Compiled with gcc 4.9.3, -O2, we get:
print_abs(100) -> abs of 100 is 100

print_abs(-100) -> abs of -100 is 100

print_abs(-2147483648) -> abs of -2147483648 is -2147483648

8

Guarded abs: which results are correct?

Again, both: attempting to apply abs to -2n-1, for n-bit

signed integers, invokes undefined behaviour

In the presence of undefined behaviour, any result is

acceptable

9

The ramifications of undefined behaviour

For signed integers x and y, x + y invokes undefined

behaviour if the result is outside the signed integer range

z = x + y;

Common, wrong, belief: undefined behaviour is local, e.g.

z = (sumIsInSignedRange(x, y) ? x + y : *);

has the semantics

Reality: if a C program P invokes undefined behaviour

when executed on input I, there are no guarantees about

what P will do when executed on input I

The situation is more drastic

10

C FAQ definition of undefined behaviour

The program may fail to compile, or it may

execute incorrectly (either crashing or silently generating

incorrect results),

http://c-faq.com/ansi/undef.html

“Anything at all can happen; the Standard imposes no

requirements.

or it may fortuitously do exactly what the

programmer intended.”

11

Common misconception

From John Regehr’s blog:

It is very common for people to say something like:

THIS IS WRONG. You are saying something like this:

(Explanation due to Roger Miller via Steve Summit:

http://www.eskimo.com/~scs/readings/undef.950311.html)

“The x86 ADD instruction is used to implement C’s signed

add operation, and it has two’s complement behavior when

the result overflows. I’m developing for an x86 platform,

so I should be able to expect two’s complement semantics

when 32-bit signed integers overflow.”

“Somebody once told me that in basketball you can’t hold

the ball and run. I got a basketball and tried it and it

worked just fine. He obviously didn’t understand basketball.”

12

Why is this a misconception?

The programming language has rules

The compiler assumes you have obeyed the rules when

optimising your code

If you break the rules: compiler optimisations may cause

your code to behave unexpectedly (from your perspective)

regardless of what the hardware does

“The x86 ADD instruction is used to implement C’s signed

add operation, and it has two’s complement behavior when

the result overflows. I’m developing for an x86 platform, so

I should be able to expect two’s complement semantics

when 32-bit signed integers overflow.”

13

Is the compiler misbehaving?

No.

An optimising compiler’s job:

1. Generate code that respects the language specification

2. Generate efficient code

A compiler can assume your program does not exhibit UBs

If your program does exhibit UBs then any behaviour is

acceptable, so whatever the compiler produces satisfies (1)

above

The compiler can thus assume no UBs and focus on (2)

14

The compiler’s “thought process”

“I will assume this program does not

exhibit undefined behaviours, because if it

does then it matters not what code I emit.”

int saturating_add(int x, int y) {

if(x > 0 && y > 0 && x + y < 0)

return INT_MAX;

if(x < 0 && y < 0 && x + y > 0)

return INT_MIN;

return x + y;

}

“I know x + y does not

overflow: this would be

an UB.

So if x and y are

positive, x + y must be

positive.

The condition is

equivalent to false.

Excellent!!”

“By similar reasoning, this

condition is equivalent to false.”

15

The compiler’s “thought process”

“I can simplify the program to:”

int saturating_add(int x, int y) {

if(false)

return INT_MAX;

if(false)

return INT_MIN;

return x + y;

}

int saturating_add(int x, int y) {

return x + y;

}

“Or better still, to:”

Full marks, compiler

16

Now what happens at runtime?

int saturating_add(int x, int y) {

return x + y;

}

This is our optimised program:

For x86, the compiler generates an add instruction that

does wrap around

Ironically, this is what we anticipated addition would do in
our original saturating_add

Compiler optimisations + wrapping add explains why:

saturating_add(2000000000, 2000000000)

gives -294967296

17

Compiler’s “thought process” again
void print_abs(int x) {

if(abs(x) < 0) {

printf("Could not compute abs of %d\n", x);

return;

}

printf("abs of %d is %d\n", x, abs(x));

}

“abs(x) is undefined for -232-1, and otherwise it is

non-negative.

I am assuming there are no UBs, so I can assume
abs(x) < 0 is false, and optimise the program to:”

void print_abs(int x) {

printf("abs of %d is %d\n", x, abs(x));

}

At runtime: x86 instructions generated for abs(-

232-1) happen to give -231-1

18

A security-critical example

unsigned int

tun_chr_poll(struct file *file, poll_table * wait)

{

struct tun_file *tfile = file->private_data;

struct tun_struct *tun = __tun_get(tfile);

struct sock *sk = tun->sk;

if (!tun)

return POLLERR;

...

}

Programmer’s reasoning: if tun is null, either:

- tun->sk will cause an abort

or (if address 0 is mapped)
- !tun will hold, and POLLERR will be returned

19

Compiler’s “thought process”

unsigned int

tun_chr_poll(struct file *file, poll_table * wait)

{

struct tun_file *tfile = file->private_data;

struct tun_struct *tun = __tun_get(tfile);

struct sock *sk = tun->sk;

if (!tun)

return POLLERR;

...

}

“The programmer is telling me that tun

is not null (because otherwise tun->sk

invokes undefined behaviour)”

“Thus I can

optimise away this

block of code!”

If tun is 0 but tun->sk does not abort, execution continues

with a bad struct sock. This was the basis for a privileged

escalation exploit, see: http://lwn.net/Articles/342330/

20

Why do languages have undefined

behaviour?

Reason 1: to cater for diverse hardware

Example: signed overflow

• x86: signed addition wraps on overflow

• MIPS: signed addition traps on overflow

• UNISYS 2200 (legacy): ones complement

representation of integers

Example: shifting

• Left-shifing 1 by 32 bits, in 32-bit register…

• Produces 0 on ARM and PowerPC

• Produces 1 on x86

21

Why do languages have undefined

behaviour?

Example: dereferencing null

• On x86, dereferencing 0 usually causes runtime

exception

• …but one can also memory-map 0 to a valid page

• On ARM, address 0 holds exception handlers

Standardising behaviour would be expensive for some

or all platforms, e.g.:

• Specifying wrap-around behaviour for signed addition

would be free on x86, but would require checking code

on MIPS

• Defining over-shifting to yield 0 would require compiling
x << y to (y > 31 ? 0 : x << y)

22

Why do languages have undefined

behaviour?

Reason 2: to allow powerful optimisations

Consider:

On 64-bit architecture, pointers are 64-bit, but int is 32-bit

Means that A[i] requires i to be extended to 64-bit

Optimisation: change type of i to long, which is 64-bit

Only works if i++ does not overflow

Making signed overflow undefined allows this optimisation

bool find(int *A, int x, int n) {

for(int i = 0; i <= n; i++)

if(A[i] == x)

return true;

return false;

}

23

More undefined behaviours in C

There are lots. Examples include:

• Reading from uninitialised variables

• Pointing past the end of an array (even if you do not

dereference the pointer)

• Aliasing between pointers with different types

• Calling memcpy with buffers that overlap

Key point to remember:

The compiler optimises your code under

the assumption that no UBs are invoked

24

Impact of undefined behaviour on

program analysers

 Many program analysis tools to re-use compiler front-

ends: saves enormous front-end development effort

 Two examples:

• GPUVerify uses Clang to translate OpenCL kernels into

LLVM byte-code, GPUVerify then works on the LLVM

byte-code

• SMACK translates LLVM byte-code into the Boogie

verification language. A successful C-based analyser

uses Clang to convert C to LLVM, and then applies

SMACK

 Problem: the compiler front-end can generate arbitrary

code for inputs that exhibit UBs

25

Example: GPUVerify and UBs

 GPUVerify says that this kernel is race-free

 Reason: the Clang front-end regards the write to A as

unreachable, since it would require a UB in order to be

reached

 Lesson: relying on compiler front-ends that exploit UBs

can render a would-be sound tool unsound

(In this case Clang does at least warn about the UB)

kernel void foo(global int * A) {

if(2/0 == 2) {

A[0] = get_global_id(0);

}

}

26

PhD opportunities

 If you have enjoyed the course and are considering

doing a PhD then please talk to me and/or Cristian

about possible PhD opportunities!

 Talk to us after a lecture or drop an email

27

A concluding detour from Ally

What is better:

An over-approximating tool that quickly reports

all possibly buggy lines of code, but has a high

false positive rate

An under-approximating tool that quickly reports

successful verification for all correct programs

but has a high false negative rate

An exact tool that produces no false positives or

false negatives, but has a high rate of non-

termination

?

28

Amazing analyser #1

Under-approximating analyser (in Python):

print “The input program is correct!”

Very efficient!

Never reports a false positive!!

Works for any programming language!!!

Drawback: not so useful for finding bugs

Managers like this tool

29

Amazing analyser #2

Over-approximating analyser (in Python):

if len(input_file) == 0:

print “The input program is correct!”

for i in range(1, len(input_file)+1):

print “Possible error at line ” + str(i)

Very efficient!

Never reports a false negative!!

Works for any programming language!!!
Drawback: has only ever managed to verify one program

30

Amazing analyser #3

Exact analyser that may not terminate (in Python):

if len(input_file) == 0:

print “The input program is correct!”

while true:

pass

Never reports a false positive or negative!

Works for any programming language!!

Has only ever managed to verify one program so far, but

experiments on other programs are still running

31

Back to our trick question

It is easy to write a useless analyser that

satisfies any of the stated requirements

In general: no way to say whether a sound technique

that produces false positives is better than a bug-finding

method which reports false negatives

Key is to design a careful combination of analyses that

works effectively in a particular domain

