
Software Reliability

Lecture 10

Systematic Concurrency Testing

Alastair Donaldson

www.doc.ic.ac.uk/~afd

Thanks to Paul Thomson for the original 

lectures slides on which this is based



2

Motivation

 Concurrency bugs are:

• crashes

• assertion failures

that only manifest in a concurrent context, depending on 

thread schedule

Schedule [ t1, t2, t1 ] exposes a concurrency bug here



3

Concurrency bugs are horrible

 May manifest rarely

 Hard to reproduce

 Non-deterministic: “Heisenbugs”



4

Systematic concurrency testing (SCT)

 Repeatedly execute the program to explore as many 

thread schedules as possible (all schedules, in the limit)

Concurrent 
program

Fixed 
input

OS scheduler
SCT Tool

Required reading paper: Madanlal Musuvathi, Shaz Qadeer, 

Thomas Ball, Gérard Basler, Piramanayagam Arumuga Nainar, 

Iulian Neamtiu: Finding and Reproducing Heisenbugs in 

Concurrent Programs. OSDI 2008.



5

Systematic concurrency testing (SCT)

 Easy to apply to real programs

 No false-alarms

 Bugs are reproducible – they can be deterministically 

replayed



6

Simple example

 We shall illustrate the idea with a simple example, with 

two threads

 Class Info holds a reference to a ProcInfo class

 Method updateProcSize manipulates the ProcInfo

object

 Method removeProcInfo sets the ProcInfo reference 

to null



public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
if(procInfo != null) {
int s = procInfo.size;
s = s * 2;
s = s + 3;
s = s / 2;
procInfo.size = s;

}
}

public void removeProcInfo() {
procInfo = null;

}

}



public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
if(procInfo != null) {
int s = procInfo.size;
s = s * 2;
s = s + 3;
s = s / 2;
procInfo.size = s;

}
}

public void removeProcInfo() {
procInfo = null;

}

}

public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;

}

}

Original code Closer to what JVM executes



Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

Thread 2 (removeProcInfo)

procInfo = null;

public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;

}

}

An interleaving



Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;

pi.size = s;

Thread 2 (removeProcInfo)

procInfo = null;

public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;

}

}

Another interleaving



Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;

assert pi != null;
pi.size = s;

Thread 2 (removeProcInfo)

procInfo = null;

public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;

}

}

And another



Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;

pi = procInfo;
assert pi != null;
ERROR!

Thread 2 (removeProcInfo)

procInfo = null;

public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;

}

}

A bad interleaving!



Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;

s = s / 2;
pi = procInfo;
assert pi != null;
ERROR!

Thread 2 (removeProcInfo)

procInfo = null;

public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;

}

}

Another bad interleaving



Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)

pi = procInfo;
assert pi != null;
ERROR!

Thread 2 (removeProcInfo)

procInfo = null;

public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;

}

}

A shorter, bad interleaving



Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)

Thread 2 (removeProcInfo)

procInfo = null;

public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;

}

}

A very short, good interleaving



16

SCT tool: implementation

 Insert callbacks into our multithreaded program.

• Bytecode/binary instrumentation (runtime or offline)

• Compile time instrumentation (clang pass)

• Source code instrumentation



public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {

pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

The method of one of our threads



public void updateProcSize() {
schedule();
ProcInfo pi = procInfo;
schedule();
if(pi != null) {

schedule();
pi = procInfo;
schedule();
assert pi != null;
schedule();
int s = pi.size;
schedule();
s = s * 2;
schedule();
s = s + 3;
schedule();
s = s / 2;
schedule();
pi = procInfo;
schedule();
assert pi != null;
schedule();
pi.size = s;

}
}

The method after instrumentation

A call to schedule ensures that 

systematic search will consider 

each enabled thread at every 

scheduling point



void main() {
Info info = new Info();
Thread t1 = new Thread( { info.updateProcSize(); } );
Thread t2 = new Thread( { info.removeProcInfo(); } );

t1.start();
t2.start();

t1.join();
t2.join();

}

A simple test harness

Systematic concurrency testing will 

explore every interleaving that can 

arise for this test case, considering 

thread switches at each schedule point



20

Improvements

 Partial-order reduction:

• Skip many schedules without missing bugs

• All terminal states will be explored

• Sound

 Schedule bounding:

• Explore only a subset of schedules so that many 

bugs will still be found

• Bugs may be missed

• Unsound



Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;

i = procInfo;
assert pi != null;
(terminate)

Thread 2 (removeProcInfo)

procInfo = null;
int x = 0;
x = x + 1;

public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;
int x = 0;
x = x + 1;

}

}

Simple Partial Order Reduction (POR): motivation

This schedule….



Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;

s = s / 2;

i = procInfo;
assert pi != null;
(terminate)

Thread 2 (removeProcInfo)

procInfo = null;

int x = 0;
x = x + 1;

public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;
int x = 0;
x = x + 1;

}

}

…is equivalent to 

this schedule

Simple Partial Order Reduction (POR): motivation



Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;

s = s / 2;

i = procInfo;

assert pi != null;
(terminate)

Thread 2 (removeProcInfo)

procInfo = null;

int x = 0;

x = x + 1;

public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;
int x = 0;
x = x + 1;

}

}

…and to this one

Simple Partial Order Reduction (POR): motivation



Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;

s = s / 2;
i = procInfo;

assert pi != null;
(terminate)

Thread 2 (removeProcInfo)

procInfo = null;

int x = 0;
x = x + 1;

public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;
int x = 0;
x = x + 1;

}

}

…and to this one…

Simple Partial Order Reduction (POR): motivation



Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;

i = procInfo;

assert pi != null;
(terminate)

Thread 2 (removeProcInfo)

procInfo = null;

int x = 0;
x = x + 1;

public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;
int x = 0;
x = x + 1;

}

}

…and also this one!  

But…

Simple Partial Order Reduction (POR): motivation



Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
i = procInfo;

assert pi != null;
pi.size = s;

Thread 2 (removeProcInfo)

procInfo = null;
int x = 0;
x = x + 1;

public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;
int x = 0;
x = x + 1;

}

}

Simple Partial Order Reduction (POR): motivation

…this schedule is not 

equivalent, because 

procInfo is a shared 

variable



Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;

s = s / 2;

i = procInfo;
assert pi != null;
(terminate)

Thread 2 (removeProcInfo)

procInfo = null;

int x = 0;
x = x + 1;

public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;
int x = 0;
x = x + 1;

}

}

These are invisible 

operations: they only 

access thread-private state

Invisible operations



Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;

s = s / 2;

i = procInfo;
assert pi != null;
(terminate)

Thread 2 (removeProcInfo)

procInfo = null;

int x = 0;
x = x + 1;

public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;
int x = 0;
x = x + 1;

}

}

These are visible

operations: they update 

shared state 

Visible operations



29

Simple partial order reduction

Rule:

 If an adjacent pair of operations in different threads are 

swapped, where at least one is invisible, the resulting 

schedule is equivalent to the original

This is because the operations must access disjoint data

The rule can be applied many times to identify many 

redundant schedules

We don’t want to explore these schedules



public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;
int x = 0;
x = x + 1;

}

}

Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;

i = procInfo;
assert pi != null;
(terminate)

Thread 2 (removeProcInfo)

procInfo = null;
int x = 0;
x = x + 1;

Merging visible and invisible operations

We treat a visible operation 

followed by a series of invisible 

operations like a single operation



public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;
int x = 0;
x = x + 1;

}

}

Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
i = procInfo;
assert pi != null;

pi.size = s;

Thread 2 (removeProcInfo)

procInfo = null;
int x = 0;
x = x + 1;

Interleavings now considered at coarser level of granularity



Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
i = procInfo;
assert pi != null;

pi.size = s;

Thread 2 (removeProcInfo)

procInfo = null;
int x = 0;
x = x + 1;

Schedule = [

t1,

t1,

t1,

t1,

t2,

t1

]

A schedule now describes a sequence of chunks



public void updateProcSize() {
schedule();
ProcInfo pi = procInfo;
schedule();
if(pi != null) {

schedule();
pi = procInfo;
schedule();
assert pi != null;
schedule();
int s = pi.size;
schedule();
s = s * 2;
schedule();
s = s + 3;
schedule();
s = s / 2;
schedule();
pi = procInfo;
schedule();
assert pi != null;
schedule();
pi.size = s;

}
}

To implement simple POR:

Instead of inserting a 

scheduling point before 

each operation…



public void updateProcSize() {
schedule();
ProcInfo pi = procInfo;

if(pi != null) {
schedule();
pi = procInfo;

assert pi != null;
schedule();
int s = pi.size;

s = s * 2;

s = s + 3;

s = s / 2;
schedule();
pi = procInfo;

assert pi != null;
schedule();
pi.size = s;

}
}

Only insert a scheduling 

point before visible

operations

To implement simple POR:



public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;
int x = 0;
x = x + 1;

}

}

Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
i = procInfo;
assert pi != null;

pi.size = s;

Thread 2 (removeProcInfo)

procInfo = null;
int x = 0;
x = x + 1;

This simple POR is not optimal

This schedule is clearly 

equivalent to…



public class Info {

private ProcInfo procInfo;

…

public void updateProcSize() {
ProcInfo pi = procInfo;
if(pi != null) {
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
pi = procInfo;
assert pi != null;
pi.size = s;

}
}

public void removeProcInfo() {
procInfo = null;
int x = 0;
x = x + 1;

}

}

Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
i = procInfo;
assert pi != null;
pi.size = s;

Thread 2 (removeProcInfo)

procInfo = null;
int x = 0;
x = x + 1;

…this schedule!

This simple POR is not optimal

Dynamic partial order reduction 

provides a more advanced 

algorithm (not covered here)



37

Schedule bounding

 Explore only a subset of schedules so that many bugs 

will still be found

 Bugs may be missed

 Unsound, but pragmatic



38

Context switches and preemptions

 A context switch occurs in a schedule whenever the 

executing thread changes

 A context switch is a preemption if the previously 

executing thread could have continued executing



Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
i = procInfo;
assert pi != null;

pi.size = s;

Thread 2 (removeProcInfo)

procInfo = null;
int x = 0;
x = x + 1;

Schedule = [

t1,

t1,

t1,

t1,

t2,

t1

]

context switch

context switch

(preemption)

A preemptive and non-preemptive context switch



Thread 1 (updateProcSize)

ProcInfo pi = procInfo;
if(pi != null)
pi = procInfo;
assert pi != null;
int s = pi.size;
s = s * 2;
s = s + 3;
s = s / 2;
i = procInfo;
assert pi != null;
pi.size = s;

Thread 2 (removeProcInfo)

procInfo = null;
int x = 0;
x = x + 1;

Schedule = [

t1,

t1,

t1,

t1,

t1,

t2

]

context switch

This context swith is not preemptive…

…because Thread 1 had no more instructions



41

Preemption bounding

Explore all schedules that exhibit d preemptions or fewer, 

for some small d

Empirical evidence suggests that real-world concurrency 

bugs usually manifest under small preemption bounds

Easy to contrive a bug that requires e.g. 17 preemptions 

to occur…

…but most concurrency bugs that can manifest with 

many preemptions can also manifest with few 

preemptions



Preemption bounding

t1

t1

t2

t3

t2

t3

(t1 blocked)

…

…

…

…

…

Key:
█ 0 preemptions
█ 1 preemption
█ 2 premptions

t1

t3

…



t1

t1

t2

t3

t1

…
t3

t3

t1

t1

A schedule with 0 preemptions.

When thread is blocked, next

thread in round-robin order

is selected



t1

t1

t2

t3

t1

…
t3

t3

t1

t1

A schedule with 0 preemptions.

When thread is blocked, next

thread in round-robin order

is selected



t1

t1

t2

t3

t1

…
t3

t3

t1

t1

Preemption bounding is not limited

to round-robin order, though –

when context-switch is forced

control may switch to any

enabled thread



t1

t1

t2

t3

t1

…
t3

t3

t1

t1

A preemption bound of 1 allows

just one unforced preemption

per schedule, but it can be

at any point

Provides a degree of

uniformity in the

interleavings that

are explored



t1

t1

t2

t3

t1

…
t3

t3

t1

t1

Without any bounding, search

can get stuck exploring a

very large “corner” of the

schedule space, comprising

many similar schedules



48

How many preemptions does this bug require?



49

Preemption bounding properties

1. Scales well (with more execution steps)

• Does not scale well with more threads

2. Simple counter-example schedules

3. Bounded guarantees

1. Missed bugs require more than k preemptions

2. Missed bugs may be less likely to occur

4. Low preemption bound => Many bugs found

• (compared with depth-first search)



51

Summary (but not the last slide!)

Systematic concurrency testing finds concurrency bugs 

automatically and allows deterministic replay

A concurrency test case is required

The schedule space can be enormous

Partial order reduction enables sound pruning

Schedule bounding restricts search – may cause bugs to 

be missed, but can find typical concurrency bugs 

effectively

However…



52

Concurrency testing using schedule bounding: 

an empirical study

Paper by Paul Thomson, me, and Adam Betts, at Principles 

and Practice of Parallel Programming 2014

 52 open source multithreaded test cases

 Baseline was naïve depth-first search

 Schedule limit was 10,000

 DFS: found 33 bugs

 Preemption bounding: found 45 bugs

 Random scheduler: 45 bugs!

Open question: were the test cases representative?


