
Happens-before and Lockset Algorithm

Cristian Cadar

Department of Computing

Imperial College London

Software Reliability Course

Autumn 2016



Race Conditions and Data Races

• A race condition occurs when multiple threads (or 
processes, systems, etc.) attempt to perform two or more 

operations at the same time and their timing affects 
program correctness.

• A data race occurs when multiple threads (or processes, 
systems, etc.) access shared data without an explicit 

mechanism to prevent simultaneous accesses and at least 
one access is a write.

2



Race Conditions vs Data Races

• Do data races imply race conditions?

• NO! There are benign races

int found = 0; //shared

int a[NThreads * N]; //shared

void  find(int val, int tid){

for (i = tid*N; i < (tid+1)*N; i++) {

if (a[i] == val)

found = 1;

if (found)

break;

}



Race Conditions vs Data Races

• Do data races imply race conditions?

• NO! There are benign races

int no_ops = 0; // shared

void  some_freq_op(){

...

no_ops++;

}

4



Race Conditions vs Data Races

• Do absence of data races imply no race conditions?

• NO! 

void  Extract(int acc_no, int sum)

{

lock(l);

int B = Acc[acc_no];

unlock(l);

lock(l);

Acc[acc_no] = B – sum;

unlock(l);

}

5



Finding Data Races

• While ideally one would like to find race 
conditions:

– Data races are often a good proxy in practice

– Data races have a precise definition and thus 

their detection can be automated 

6



Finding Data Races

Two main approaches:

• Static analysis

• Dynamic analysis

With the trade-offs discussed before

In this course, we’ll discuss dynamic race detection

7



Finding Data Races

Two main approaches:

• Static analysis

• Dynamic analysis

With the trade-offs discussed before

In this course, we’ll discuss dynamic race detection

8



REVIEW OF SOME BASIC 

SYNCHRONIZATION 

PRIMITIVES

9



Disabling Interrupts

• Works only on single-processor systems

• Misbehaving/buggy processes may never 

release CPU

– Mechanism usually only used by kernel code

void Extract(int acc_no, int sum)

{

CLI();

int B = Acc[acc_no];

Acc[acc_no] = B – sum;

STI();

}

10



Setting Interrupt Level

• Variant in which we disable all interrupts of 
priority less than or equal to n

void Extract(int acc_no, int sum)

{

l = SetInterruptLevel(n);

int B = Acc[acc_no];

Acc[acc_no] = B – sum;

RestoreInterruptLevel(l);

}

11



Locks

• Only one thread can acquire the lock at any time

• Lock granularity: the amount of data a lock is 

protecting

• Lock contention: a measure of the number of 
processes waiting for a lock

• Read-write locks

– Locks can be acquired in either read or write mode

– Multiple threads can acquire a lock in read mode

– Only one thread can acquire a lock in write mode

12



Read/Write Locks

Read/write locks:

• lock_RD(L) 

acquire L in read mode

• lock_WR(L) 

acquire L in write mode

• In write mode, the 

thread has exclusive 
access

• Multiple threads can 
acquire the lock in read 

mode!

void Extract(int acc_no, 

int sum)

{

lock_WR(L[acc_no]);

Acc[acc_no] -= sum;

add_debit(acc_no, sum);

unlock(L[acc_no]);

}

void ViewHistory(int acc_no) 

{  

lock_RD(L[acc_no]);

print_transactions(acc_no);

unlock(L[acc_no]);

}

13



Semaphores

• Blocking synchronization mechanism invented by 
Dijkstra in 1965

• Idea: Processes will cooperate by means of signals
– A process will stop, waiting for a specific signal

– A process will continue if it has received a specific 
signal

• Semaphores consists of a counter and a queue of 
processes currently waiting for that semaphore

• Unlike locks, semaphores don’t have an owner

14



Semaphore Operations

down(s) ::= if counter(s) > 0

counter(s) = counter(s) - 1 

else 

add P to queue(s)

suspend current process P

up(s) ::= if queue(s) not empty

resume one process in queue(s)

else 

counter(s) = counter(s) + 1 

init(s, i) ::= counter(s) = i

queue(s) = {}

15



Semaphores: Mutual Exclusion

• Binary semaphore: counter is initialized to 1

• Similar to a lock

16



Semaphores: Ordering Events

17



Traces

• Dynamic race detection operates on actual 
executions, which can be described by 

instruction traces:

18

lock(l); (T1)

x++; (T1)

unlock(l); (T1) 

lock(l); (T2)

x++; (T2)

unlock(l); (T2)



Happens-before relationship

• Formulated by Leslie Lamport in 1976

• Partial order relation between instructions in a trace

• Denoted by a  b where a, b are instructions in a trace

• Consider a, b with a occurring before b in the trace:

– If a, b are in the same thread, then a  b

– If a is unlock(L) and b is lock(L), then a  b

(can generalise for other synchronisation mechanisms)

• Irreflexive:a, a  a

• Antisymmetric:  a, b:  a  b then b  a

• Transitive: a, b, c: a  b  b  c  then a  c
19



Happens-before relationship

• A data race occurs between a, b in the trace 
iff:

– they access the same memory location

– at least one of them is a write

– they are unordered according to happens-before

20



Happens-before

int a, b; // shared

void  T1()             void T2() 

{                      {

a = 1;                 b = 2;

b = 1;                 a = 2;

}                      }

a = 1

b = 1

b = 2

a = 2

Date race between a =1, a=2

and between b = 1, b =2

21



Happens-before

int a, b; // shared

void  T1()          void T2() 

{                   {

lock(L);            lock(L);

a = 1;              b = 2;

b = 1;              a = 2;

unlock(L);          unlock(L);

}                   }

a = 1

b = 1

lock

unlock

a = 2

b = 2

lock

unlock
22



Happens-before

int a, b; // shared

void  T1()          void T2() 

{                   {

a++;                lock(L)

lock(L);            b++;    

b++;                unlock(L);

unlock(L);          a++;

}                   }

lock

b++

a++

unlock

b++

unlock

lock

a++



Happens-before

int a, b; // shared

void  T1()          void T2() 

{                   {

a++;                lock(L)

lock(L);            b++;    

b++;                unlock(L);

unlock(L);          a++;

}                   }

lock

b++

a++

unlock

b++

unlock

lock

a++

24



Lockset Algorithm and Eraser

• Happens-before is quite sensitive to the actual 
execution order

– Has a high false negative rate

– But no false positives (assuming sync primitives known)

• The lockset algorithm is an alternative dynamic 

analysis that 

– Has fewer false negatives than happens-before

– But a relatively high false positive rate

• Lockset algorithm introduced in the context of 
Eraser by Savage et al. [SOSP 1997, TOCS 1997]

– Recommended reading, see course website
25



Locking Discipline

Eraser checks the following locking discipline:

Each access to a shared variable is  

consistently protected by some lock L 

26



Locking Discipline

void  Extract(int acc_no, int sum)

{

lock(l);

int B = Acc[acc_no];

unlock(l);

lock(l);

Acc[acc_no] = B – sum;

unlock(l);

}

• Does locking discipline mean no race conditions?

• NO! 

27



Locking Discipline

lock(a);

lock(b);

x++;

unlock(b);

unlock(a);

T1

lock(b);

lock(c);

x++;

unlock(c);

unlock(b);

T2

lock(a);

lock(c);

x++;

unlock(c);

unlock(a);

T3

• Does lack of locking discipline mean data races?

• NO! 

28



Lockset  Algorithm

locks_held(T): the set of locks currently

held by thread T. Initialized to empty set.

lock(L); (T)  add L to locks_held(T) 

unlock(L); (T)  remove L from locks_held(T)

C(v): the current candidate set of the locks 

protecting shared variable v.  Initialized to 

the set of all locks.

On each access to v by thread T:

C(v) = C(v) ∩ locks_held(T)

if C(v) = {} issue a warning

lockset 
refinement

29



Example 1

locks_held(T1) = {}

locks_held(T2) = {}

C(a) = C(b) = {L}

lock(L); (T1)            locks_held(T1) = {L}

a++;     (T1)            C(a) = {L}

b++;     (T1)            C(b) = {L}

unlock(L); (T1)          locks_held(T1) = {}

lock(L)    (T2)        locks_held(T2) = {}

b++;       (T2)        C(b) = {L}

unlock(L); (T2)        locks_held(T2) = {}

a++;       (T2)        C(a) = {} => warning

30



Example 2

locks_held(T1) = {}

locks_held(T2) = {}

C(a) = C(b) = {L1, L2}

lock(L1); (T1)           locks_held(T1) = {L1}

lock(L2); (T1)           locks_held(T1) = {L1,L2}

a++; (T1)                C(a) = {L1, L2}

unlock(L2); (T1)         locks_held(T1) = {L1}

lock(L2) (T2)          locks_held(T2) = {L2}

b++; (T2)              C(b) = {L2}

unlock(L2); (T2)       locks_held(T2) = {}

b++; (T1)                C(b) = {} => warning

unlock(L1)               locks_held(T1) = {}
31



Refinements

Three common programming practices that violate 
locking policy:

– Initialization can be safely done without holding a lock

– Read-shared data: variables are written during 

initialization and then shared as read-only

– Read-write locks: need special handling

32



Initialization and Read-Sharing

• No lockset refinement until after initialization

• How do we detect the end of initialization?

– When variable first accessed by second thread

• What about unlocked read-sharing?

– Start reporting races only when variable first written by 
a second thread

33



Eraser’s state transitions

Virgin

Exclusive

write

read/write
1st thread

Shared

read

new thread

init C(v)

No C(v) update

C(v) updated
no warnings

Shared-
Modified

read

write, new thread

write

C(v) updated
warnings

34



Read-Write Locks

Refined locking discipline:

For each variable v, a lock L is held 

in write mode for every write of v, 

and in either read or write mode for 

every read of v.

35



Refined Lockset Algorithm

locks_held(T): the set of locks currently held  

by thread T, in any mode. Initialized to {}.

wr_locks_held(T): the set of locks currently 

held by thread T in write mode. Init to {}.

lock_RD(L); (T)  add L to locks_held(T) 

lock_WR(L); (T)  add L to locks_held(T) 

and wr_locks_held(T) 

unlock(L); (T)  remove L from locks_held(T) 

and wr_locks_held(T)

36



Refined Lockset Algorithm

C(v): the current candidate set of the locks 

protecting shared variable v.  Initialized to 

the set of all locks.

On each read to v by thread T:

C(v) = C(v) ∩ locks_held(T)

if C(v) = {} issue a warning

On each write to v by thread T:

C(v) = C(v) ∩ wr_locks_held(T)

if C(v) = {} issue a warning

37



Finding Races in Kernel Code

• How do you deal with Set/Restore interrupt level?

• Assign a lock to each interrupt level

• SetInterruptLevel(l)  acquire all locks associated 

to first n interrupt levels

• RestoreInterrupt(l)  release all locks associated 

to interrupt levels greater than l and up to current 
level

l = SetInterruptLevel(4); // l=2;lk(1);lk(2);lk(3);lk(4); 

int B = Acc[acc_no]; 

Acc[acc_no] = B – sum;

RestoreInterruptLevel(l); // rl(3);rl(4);



Eraser – Instrumentation

• Eraser uses static binary instrumentation to 
intercept necessary operations (allocators, 

locks/unlocks, loads/stores):

– Based on the ATOM static binary rewriting framework

– Results in 10-30x slowdown

• What accesses to instrument?

– Shared data assumed to be in heap or global data

– Each 32-bit word in heap/global data assumed to be 
shared var

39



Shadow Memory

• Standard approach to keep analysis 
info for each memory location

– In this case, those in heap and global 

segment

• In Eraser, simple scheme in which 
one adds a simple offset to obtain 

shadow word

– Memory consumption is doubled

[From Eraser paper]



Eraser Implementation –
Candidate Lock Sets

• Naïve implementation

– Store list of locks for each shared memory location

– Huge memory overhead

• In practice, number of distinct locksets small 

– < 10k in their experiments

• Map each lockset to a small integer, a “lockset index”

– Pointing into a table whose entries represent the lockset

– Locks sorted so that intersection is fast

– Potentially new locksets are created after lock/unlock and lockset 
refinement

– Each lockset index remains valid for the entire execution

• The result of each intersection is also cached

41



Eraser Implementation –
Candidate Locksets

[From Eraser paper]



Evaluation

• Altavista web server and index library

– Minor races

• Vesta cache server

– Serious and minor races

• Petal distributed disk server

– Minor races

• Undergraduate assignments

– Serious races

43



False Positives

FPs are the main problem of Eraser, three 
main categories (but not all):

1) Memory reuse: due to private allocators, 
free lists

2) Private locks: non-standard implementation

3) Bening races: true races which don’t affect 
correctness

44



False Positives

Program annotations to eliminate FPs:

1) Memory reuse: EraserReuse(address, size)

2) Private locks: EraserReadLock(lock), EraserReadUnlock(lock), 

EraserWriteLock(lock), EraserWriteUnlock(lock)

3) Bening races: EraserIgnoreOn(), EraserIgnoreOff()

Needed a small number of annotations to eliminate 

all FPs in real apps:

• 9 in Altavista

• 10 in Vesta

• 4 in Petal
45



Benign race example (AltaVista)

46



Conclusion

• Data races vs race conditions

• Happens-before relation

– No false positives but many false negatives

• Eraser

– Fewer false negatives but lots of false positives

– Based on the idea of enforcing simple locking 

discipline

– Refinements for initialization, read shared and 
read/write locks

– Shown effective for several real applications
47


