
Software Reliability

Lecture 8

Invariant Generation Using Houdini

Alastair Donaldson

www.doc.ic.ac.uk/~afd

2

Static program verification depends on invariants

Procedure summarisation relies on pre- and post-conditions.

These are invariants: the pre-condition must be invariantly true on

method entry, the post-condition invariantly true on method exit

Loop summarisation uses a loop invariant: a fact that must be

invariantly true when control reaches the loop head

Invariant generation is a challenging problem

We shall study Houdini, a simple method for static generation of

invariants

3

Before we begin: recap on inductive invariants

i = 0;

x = 1;

while(i < 100) {

i = i + 1;

x = 1 - x;

}

i >= 0 is a loop invariant

x >= 0 is also a loop invariant

i >= 0 is inductive: knowing only i >= 0, the loop

body tells us i >= 0 is maintained

assume(i >= 0);

if(i < 100) {

i = i + 1;

x = 1 - x;

assert(i >= 0);

}

Assume only that i is non-

negative (i could be 100000, x

can be anything)

Based on just this info, i >= 0

will still hold if we execute one

more loop iteration

4

Before we begin: recap on inductive invariants

i = 0;

x = 1;

while(i < 100) {

i = i + 1;

x = 1 - x;

}

i >= 0 is a loop invariant

x >= 0 is also a loop invariant

x >= 0 is not inductive: knowing only x >= 0, the loop

body does not tells us x >= 0 is maintained

assume(x >= 0);

if(i < 100) {

i = i + 1;

x = 1 - x;

assert(x >= 0);

}

Assuming only that x is non-

negative admits, for example,
x being 100000 and i being 0

If x was 100000 and i was 0,

x will be negative – the

invariant is not maintained

5

Houdini in a nutshell

Input: a program P, and a set of candidate invariants

The candidate invariants are “guesses” at pre-conditions, post-

conditions and loop invariants. Many of them will turn out to be

wrong

Result: the unique largest subset of the candidates whose

conjunction is an inductive invariant for the program

Worst case: this subset is empty

Best case: all candidates are shown to be invariants

6

Houdini in a nutshell

Where do the candidates come from?

It does not matter to Houdini: the program and the candidates are

provided as input to Houdini

In practice, candidates could come from various sources, including:

- Cheap static analysis of source code

- Dynamic analysis (e.g. the Daikon method)

- Users (i.e., provided manually)

Some example uses of Houdini:

- Reducing false positives in ESC/Java (see recommended paper)

- Proving race-freedom of GPU kernels in GPUVerify (tool

developed at Imperial)

- State-of-the-art device driver analysis (see Microsoft’s Q tool)

7

Houdini for loop invariant generation: example

void foo() {

int x = 1, y = 2, z = 3, temp;

int i = 0;

while(i < 10000)

candidate i == 0,

candidate i != 0,

candidate i >= 0,

candidate i > 0,

candidate i < 10000,

candidate i <= 10000,

candidate x != y

{

temp = x; x = y; y = z; z = temp;

i = i + 1;

}

}

Using your intuition,

which of these guesses

are loop invariants?

8

Iteration 1: try to verify that all candidates

are invariant

void foo_houdini_1() {

int x = 1, y = 2, z = 3, temp;

int i = 0;

assert(i == 0); assert(i != 0); assert(i >= 0); assert(i > 0);

assert(i < 10000); assert(i <= 10000); assert(x != y);

havoc(temp, x, y, z, i);

assume(i == 0); assume(i != 0); assume(i >= 0); assume(i > 0);

assume(i < 10000); assume(i <= 10000); assume(x != y);

if(i < 10000) {

temp = x; x = y; y = z; z = temp;

i = i + 1;

assert(i == 0); assert(i != 0); assert(i >= 0); assert(i > 0);

assert(i < 10000); assert(i <= 10000); assert(x != y);

assume(false);

}

}

Two assertions can fail:
assert(i != 0);

assert(i > 0);

None of these assertions

fail. Why?

9

Kill candidates i != 0 and i > 0

void foo() {

int x = 1, y = 2, z = 3, temp;

int i = 0;

while(i < 10000)

candidate i == 0,

candidate i != 0,

candidate i >= 0,

candidate i > 0,

candidate i < 10000,

candidate i <= 10000,

candidate x != y

{

temp = x; x = y; y = z; z = temp;

i = i + 1;

}

}

10

Iteration 2: try to verify that remaining

candidates are invariant

void foo_houdini_2() {

int x = 1, y = 2, z = 3, temp;

int i = 0;

assert(i == 0); assert(i >= 0);

assert(i < 10000); assert(i <= 10000); assert(x != y);

havoc(temp, x, y, z, i);

assume(i == 0); assume(i >= 0);

assume(i < 10000); assume(i <= 10000); assume(x != y);

if(i < 10000) {

temp = x; x = y; y = z; z = temp;

i = i + 1;

assert(i == 0); assert(i >= 0);

assert(i < 10000); assert(i <= 10000); assert(x != y);

assume(false);

}

}

Two assertions can fail:
assert(i == 0);

assert(x != y);

What changed to allow these

assertions to start failing?

11

Kill candidates i == 0 and x != y

void foo() {

int x = 1, y = 2, z = 3, temp;

int i = 0;

while(i < 10000)

candidate i == 0,

candidate i != 0,

candidate i >= 0,

candidate i > 0,

candidate i < 10000,

candidate i <= 10000,

candidate x != y

{

temp = x; x = y; y = z; z = temp;

i = i + 1;

}

}

12

Iteration 3: try to verify that remaining

candidates are invariant

void foo_houdini_3() {

int x = 1, y = 2, z = 3, temp;

int i = 0;

assert(i >= 0);

assert(i < 10000); assert(i <= 10000);

havoc(temp, x, y, z, i);

assume(i >= 0);

assume(i < 10000); assume(i <= 10000);

if(i < 10000) {

temp = x; x = y; y = z; z = temp;

i = i + 1;

assert(i >= 0);

assert(i < 10000); assert(i <= 10000);

assume(false);

}

}

One assertion can fail:
assert(i < 10000);

13

Kill candidate i < 10000

void foo() {

int x = 1, y = 2, z = 3, temp;

int i = 0;

while(i < 10000)

candidate i == 0,

candidate i != 0,

candidate i >= 0,

candidate i > 0,

candidate i < 10000,

candidate i <= 10000,

candidate x != y

{

temp = x; x = y; y = z; z = temp;

i = i + 1;

}

}

14

Iteration 4: try to verify that remaining

candidates are invariant

void foo_houdini_4() {

int x = 1, y = 2, z = 3, temp;

int i = 0;

assert(i >= 0);

assert(i <= 10000);

havoc(temp, x, y, z, i);

assume(i >= 0);

assume(i <= 10000);

if(i < 10000) {

temp = x; x = y; y = z; z = temp;

i = i + 1;

assert(i >= 0);

assert(i <= 10000);

assume(false);

}

}

Verification succeeds!

15

Result of Houdini

void foo() {

int x = 1, y = 2, z = 3, temp;

int i = 0;

while(i < 10000)

candidate i == 0,

candidate i != 0,

candidate i >= 0,

candidate i > 0,

candidate i < 10000,

candidate i <= 10000,

candidate x != y

{

temp = x; x = y; y = z; z = temp;

i = i + 1;

}

}

Houdini tells us:
(i >= 0 && i <= 10000)

is an inductive invariant for

the loop

Guarantee: this is the

strongest inductive

invariant for the loop that is

a conjunction of these

candidates

Observation: x != y is a loop invariant, but it is not

inductive – knowing only x != y, the loop body

does not guarantee that x != y is maintained

16

Houdini for loops: general case

Input:

- Procedure P containing:

- loops with regular invariants

- calls to procedures with summaries

- assertions

- Set C of candidate invariants for the loops of P

Result:

- P is CORRECT, plus largest subset of C found to be an inductive

invariant

or

- P may be INCORRECT: problem with an assertion, pre-condition

or regular loop invariant

May be a false positive

as this is static program

verification

17

Houdini for loops: general case

enable each candidate invariant in P;

while(true) {

result = StaticallyVerify(P); // Apply static program verification

if(result == CORRECT) {

return (CORRECT, candidates still enabled in P);

} else if(result == INCORRECT due to failed candidate c) {

disable c in P;

} else {

// Must have result == INCORRECT due to failed assertion,

// or regular invariant in P

return (INCORRECT, details of failure);

}

}

18

Claims about Houdini

The procedure terminates:

- On each iteration, either:

(a) the program is verified (termination),

(b) a possible defect is reported (termination), or

(c) a candidate is eliminated

- There are only |C| candidates, so termination is guaranteed within

|C| iterations

The procedure is sound:

- This is immediate because StaticallyVerify employs static

program verification, which is sound

The computed invariant (in the case that P is CORRECT) is the

largest subset of C that is an inductive invariant:

- Let’s see a proof-sketch of this

19

Proof sketch: Houdini computes largest

inductive invariant

Suppose I and J are known to be an inductive invariants for a loop

while(c) { B }. That is:

assert(I);

havoc(modset(B));

assume(I);

if(c) {

B;

assert(I);

assume(false);

}

is correct

assert(J);

havoc(modset(B));

assume(J);

if(c) {

B;

assert(J);

assume(false);

}

is correct

Then I && J must also be an inductive invariant for the loop. That is:

assert(I && J);

havoc(modset(B));

assume(I && J);

if(c) {

B;

assert(I && J);

assume(false);

}

is correct

20

Proof sketch: Houdini computes largest

inductive invariant

We have: I is inductive and J is inductive => I && J is inductive

Consequence: For a set of candidates C, there is a unique largest

subset { d1, …, dn } of C such that d1 && … && dn is inductive

Justification: if { e1, …, ea } and { f1, …, fb } are subsets with:

- e1 && … && ea inductive and

- f1 && … && fb inductive

then

- e1 && … && ea && f1 && … fb is also inductive (by the above)

Get the largest inductive set by merging all inductive sets

So, the unique largest inductive invariant exists

Remains to show why Houdini is guaranteed to compute it

21

Proof sketch: Houdini computes largest

inductive invariant

Suppose I is known to be an inductive invariant for a loop

while(c) { B }. That is: assert(I);

havoc(modset(B));

assume(I);

if(c) {

B;

assert(I);

assume(false);

} is correct

If we strengthen I by conjoining some extra stuff, X, to it, I && X

might not be an inductive invariant:

assert(I); assert(X);

havoc(modset(B));

assume(I); assume(X);

if(c) {

B;

assert(I); assert(X);

assume(false);

} might not be correct

22

Proof sketch: Houdini computes largest

inductive invariant

Suppose we have:

assert(I);

havoc(modset(B));

assume(I);

if(c) {

B;

assert(I);

assume(false);

}

CORRECT

but:

assert(I); assert(X);

havoc(modset(B));

assume(I); assume(X);

if(c) {

B;

assert(I); assert(X);

assume(false);

}

INCORRECT

It is not possible for
assert(I) to fail

in Q, because

otherwise
assert(I) would

also fail in P

P

Q

Consequence:

Houdini will never

kill a candidate c if

c belongs to an

inductive subset of

candidates

23

Set of candidates C can be implicitly partitioned into D and E

- D is the largest inductive subset

- E is the rest

Of course, we don’t know what D and E are before we run

Houdini, but the sets exist

Houdini will successively kill elements of E, but will never kill

elements of D

Eventually, only D will remain and it will be shown to be inductive

Proof sketch: Houdini computes largest

inductive invariant

24

Only conjunctive invariants can be computed:

With candidates a, b, c, d:

- We may compute a conjunctive invariant such as a && b && d

- We will not compute an invariant that involves disjunction or
negation, such as a || !b

With candidate set C, we can only compute an invariant over C:

quality of invariant depends on good guesses

To get a high quality invariant, we should guess aggressively

But then many guesses will be wrong, and refuting bad candidates

is expensive (requires invoking an SMT solver)

Limitations of Houdini approach

25

Houdini for procedures

Suppose procedures P1, …, Pn have:

• candidate loop invariants

• candidate preconditions

• candidate postconditions

We can extend Houdini to find the largest subset of these

candidates that is an inductive invariant

Loop invariants,

preconditions,

postconditions are

all invariants in the

general sense

Inductive: using just these

invariants, we can prove

all the procedures correct

and re-establish all the

invariants

26

Houdini for procedures: basic idea

Try to verify each procedure in turn

If verification fails due to a non-candidate precondition,

postcondition or loop invariant, report INCORRECT

Possible error: could

be a false positive

If verification of foo fails due to:

• candidate postcondition of foo, remove foo’s

candidate postcondition

• candidate loop invariant in foo, remove foo’s

candidate loop invariant

• candidate precondition of bar (because foo calls

bar) remove bar’s candidate precondition

If all procedures verify with no candidate failures, report

CORRECT

Otherwise repeat the process (re-verify everything)

27

Worked example

int x; int y;

void foo()

c_requires y == 2*x, c_requires (x % 2) == 0, c_ensures x >= 0,

c_ensures y == 2*x, c_ensures (y % 2) == 0 {

if(x < 1000) {

x = x + 1;

y = y + 2;

bar();

}

}

void bar()

c_requires y == 2*x, c_requires (x % 2) == 0, ensures y == 2*x,

c_ensures (y % 2) == 0 {

if(x > 0) {

x = x – 1;

y = y – 2;

foo();

}

}

c_requires: shorthand for

candidate_requires

c_ensures: similar

28

1) Verify foo with all candidates

assume y == 2*x;

assume (x % 2) == 0;

if(x < 1000) {

x = x + 1;

y = y + 2;

// assert bar’s preconditions

assert y == 2*x;

assert (x % 2) == 0;

// havoc bar’s modset

havoc x;

havoc y;

// assume bar’s postconditions

assume y == 2*x;

assume (y % 2) == 0;

}

assert x >= 0;

assert y == 2*x;

assert (y % 2) == 0;

Summary for bar using

bar’s current

candidates

INCORRECT: kill

candidate

precondition of bar

INCORRECT: kill

candidate

postcondition of foo

29

Remaining candidates

int x; int y;

void foo()

c_requires y == 2*x, c_requires (x % 2) == 0, c_ensures x >= 0,

c_ensures y == 2*x, c_ensures (y % 2) == 0 {

if(x < 1000) {

x = x + 1;

y = y + 2;

bar();

}

}

void bar()

c_requires y == 2*x, c_requires (x % 2) == 0, ensures y == 2*x,

c_ensures (y % 2) == 0 {

if(x > 0) {

x = x – 1;

y = y – 2;

foo();

}

}

30

2) Verify bar with remaining candidates

assume y == 2*x;

if(x > 0) {

x = x – 1;

y = y – 2;

// assert foo’s preconditions

assert y == 2*x;

assert (x % 2) == 0;

// havoc foo’s modset

havoc x;

havoc y;

// assume foo’s postconditions

assume y == 2*x;

assume (y % 2) == 0;

}

assert y == 2*x;

assert (y % 2) == 0;

Summary for foo using

foo’s current

candidates

INCORRECT: kill

candidate

precondition of foo

31

Remaining candidates

int x; int y;

void foo()

c_requires y == 2*x, c_requires (x % 2) == 0, c_ensures x >= 0,

c_ensures y == 2*x, c_ensures (y % 2) == 0 {

if(x < 1000) {

x = x + 1;

y = y + 2;

bar();

}

}

void bar()

c_requires y == 2*x, c_requires (x % 2) == 0, ensures y == 2*x,

c_ensures (y % 2) == 0 {

if(x > 0) {

x = x – 1;

y = y – 2;

foo();

}

}

32

3) Verify foo with remaining candidates

assume y == 2*x;

if(x < 1000) {

x = x + 1;

y = y + 2;

// assert bar’s preconditions

assert y == 2*x;

// havoc bar’s modset

havoc x;

havoc y;

// assume bar’s postconditions

assume y == 2*x;

assume (y % 2) == 0;

}

assert y == 2*x;

assert (y % 2) == 0;

Summary for bar using

bar’s current

candidates

CORRECT

33

4) Verify bar with remaining candidates

assume y == 2*x;

if(x > 0) {

x = x – 1;

y = y – 2;

// assert foo’s preconditions

assert y == 2*x;

// havoc foo’s modset

havoc x;

havoc y;

// assume foo’s postconditions

assume y == 2*x;

assume (y % 2) == 0;

}

assert y == 2*x;

assert (y % 2) == 0;

Summary for foo using

foo’s current

candidates

CORRECT

34

Result from worked example

foo and bar have been shown to satisfy these specs:

int x; int y;

void foo()

requires y == 2*x, ensures y == 2*x, ensures (y % 2) == 0 {

if(x < 1000) {

x = x + 1;

y = y + 2;

bar();

}

}

void bar()

requires y == 2*x, ensures y == 2*x, ensures (y % 2) == 0 {

if(x > 0) {

x = x – 1;

y = y – 2;

foo();

}

}

This non-candidate

postcondition was

proven

35

Basic Houdini algorithm with procedures

enable each candidate invariant in P1, …, Pn;

done = false;

while(! done) {

done = true;

for i in { 1, …, n } {

result = StaticallyVerify(Pi); // Apply static prog. verification

if(result == INCORRECT due to failed candidate c) {

disable c in P1, …, Pn;

done = false;

} else if(result == INCORRECT due to failed non-candidate) {

// Problem with: assertion, regular loop invariant or regular

// postcondition of Pi, or regular precondition of some Pj

return (INCORRECT, details of failure);

}

}

}

return (CORRECT, candidates still enabled in P1, …, Pn);

36

Optimisations

 Repeatedly check foo until foo verifies or non-candidate

failure is reported

 If verification of foo leads to a candidate failure, re-verify

foo with the reduced candidate set

 Avoid unnecessary re-verification. If verifying foo kills:

• precondition of bar:

mark bar for re-verification

• postcondition of foo:

mark all procedures that directly call foo for re-

verification

• loop invariant of foo:

no need to re-verify other procedures

 There are opportunities for parallelising Houdini – think

about them

37

A demo of Houdini in the Boogie verification

framework

Example 1: A hand-written Boogie program

Example 2: A Boogie program generated by the GPUVerify tool

Live demo

