Imperial College
London

SMT Solvers

Cristian Cadar

SOFTWARE RELIABILITY
GROUP

Department of Computing
Imperial College London

Software Reliability Course
Autumn 2016

Why SMT?

SAT solvers operate at the level of Boolean or propositional
formulas

Many application domains generate constraints at a higher level

SMT supports rich theories 1n classical first-order logic with
equality

SMT Theories

* A theory consists of a signature St and axioms A
* Stconsists of 3 types of constants:

— Object constants refer to objects in the universe of
discourse, e.g, John, Mary,... for universe of people

— Function constants refer to functions
« Each function has an associated arity, e.g., parent has arity 1

» Object constants can be seen as function constants with arity 0
— Predicate constants refer to relations between objects
» Each predicate has an associated arity, e.g., likes has arity 2

* Ay consists of axioms which interpret some functions
and predicates

Theory of Equality T_

* Also referred to as empty theory
- St :{=ab,c,...,5Lgh ..,p,qr1,...}
e f,g,...,p,q, ... are uninterpreted functions and
predicates
* “Built-in” predicate = 1s interpreted by axioms Ar_:
— V X. X=X (reflexivity)
— VX, y.X=y=>y=X (symmetry)
~ VX, y,z.x=yNy=z=>x=2z (transitivity)
— V' Xqyee i XYoo Yo N X =y => (X, .00 X)) = (Yq,. .. Y5)
(function congruence)

(predicate congruence) 4

Theory of Equality T_

* Also known as theory of equality with
uninterpreted functions

* Uninterpreted functions are useful as an
abstraction or over-approximation mechanism

— Remember static program verification

Theory of Presburger Arithmetic

* Presburger arithmetic: allows only addition
over natural numbers

¢ S;: {0, 1, =, +}

o Ay:
— VX.(x+1=0) (zero)
— VXx.x+0=0 (plus zero)
— VX, Y. x+1 =y+1 => x=y (successor)
— VX, V. x+ (y+1) = (x+y)+1 (plus successor)

_ F[O] A (Vx. F[x] => F[x+1]) => Vx.F[x] (induction)

Theory of Fixed-width Bitvectors

* Object constants are fixed-width bitvectors,
e.g., 011011, 001

* Functions include extraction, concatenation,
bitwise operations, arithmetic operations

Theory of Arrays

e Sypifa,b,c, ...,k ...v,w, ..., = read, write)
* At a high-level:

— read(a, i) is a binary function that returns the value of array a
at index 1

— write(a, i, v) 1s a ternary function that returns an array
identical to a except that at index 1 1t has value v

¢ AA:
— V a,li,j.i=j=>read(a, i) =read(a, j) (array congruence)
— V a,i,j,v.i=j=>read(write(a, i, v),j) =V (read-over-write 1)
- V a,i,j,v. (i =j) =>read(write(a, i, v), j) =read(a, j) (read-over-write 2)

Solving SMT queries

« Eager translation to equisatisfiable SAT formula
— Some theories are better matches than others

— Multiple translations possible, SMT solver performs
several transformations/optimizations in the process
using information available at the theory level

e E.g., simplifying x —x to 0.
 DPLL|T]
— Adapts DPLL to work at the level of theory T (theory
deduction, theory conflicts, etc.)

Combination of Theories

* (Given
— theory T, with signature St and axioms Ar,
— theory T, with signature Sy, and axioms Ar,
— an SMT solver for T,
— an SMT solver for T,

* Can we produce a solver for T; U T,?

— T, U T, with signature St U St and axioms
Ar, U Aq,

10

Nelson-Oppen Framework

* Framework for deciding combined theories
under certain assumptions, €.g, only for
quantifier-free theories

« Examples

— theory of arrays and bitvectors
— theory of arrays and integers

11

Nelson-Oppen Framework

* Two phases:
— Purification: transform F 1nto equisatisfiable
formula F° = F; /A F, such that
* F, belongs only to T,
 F, belongs only to T,
— Equality propagation: propagate equalities
between theories

12

STP solver

« SMT solver for the theory of bitvectors and arrays
« Based on eager translation to SAT (uses MiniSAT)

* Developed at Stanford by Ganesh and Dill, mitially
targeted to, and driven by, EXE

13

Theory of Bitvectors and Arrays

* (Can accurately encode the semantics of C programs

— Model each memory block as an array of 8-bit BVs
— Bind types to expressions, not bits

char buf[N]; // symbolic

struct pkt1 { char x, y, v, w; int z; } *pa = (struct pkt1*) buf;
struct pkt2 { unsigned i, j; } *pb = (struct pkt2*) buf;

if (pa[2].v < 0) { assert(pb[2].i >= 1<<23); }

buf: ARRAY BITVECTOR (32)OF BITVECTOR(8)

SBVLT (buf[18] , 0x00)

BVGE (buf [19] @buf[18] @buf[17]@buf[16], 0x00800000)

Conversion to SAT

« Each arithmetic operation on bitvectors can be
encoded as a circuit / formula

* E.g., addition translated as a ripple-carry adder

e The main difficulty 1s removing arrays

e This 1s done starting from the array axioms

Eliminating Arrays

 Transformation 1: eliminate writes
« read(write(A, 1, v), j) < ite(i=], v, read(A, J))

« a write by itself (not inside a read) 1s meaningless
and can be discarded

e Transformation 2: eliminate reads

a) replace each syntactically-unique read by a fresh
variable

b) add array axioms: for each pair of indexes, if the
indexes are equal, so are the corresponding
introduced variables

Eliminating Reads

(ali;] = e1) A (aliz] = ez) A (aliz] = e3) A (ig+iz+iz=6)
(vi = e)) A(vz = ex) A(vs = e3) A (ig+ip+iz=6)

(i1=i2=>vi=Vv) A(ip=iz=>vi=v3) A(ip = i3 => v, = v3)

STP’s read elimination 1s expensive:

s
\-—~ Expands each formula by n-(n-1)/2 terms, where
| n 1s the number of syntactically distinct indexes

17

Array-based Refinement in STP

STP’s conversion of array terms to SAT is expensive
(aliz] = e1) A(aliz] = e2) A (alis] = e3) A (i+iz+iz=6)
(vi=e)) A(va=ez) A(vs = e3) A(ir+iz+iz=6)

Approximation ‘ Original formula
UNSATISFIABLE UNSATISFIABLE

Array-based Refinement in STP

STP’s conversion of array terms to SAT is expensive
(aliz] = e1) A(aliz] = e2) A (alis] = e3) A (i+iz+iz=6)
(vi=e) A(vza=ep) A(vs = e3) A(i+iz+iz=6)

(a[3]=3) A (1+2+3 = 6)

i;=3 J§> (a[1]=1) A(a[2]=2) A YA

19

Array-based Refinement in STP

STP’s conversion of array terms to SAT is expensive
(aliz] = e1) A(aliz] = e2) A (alis] = e3) A (i+iz+iz=6)
(vi=e) A(vza=ep) A(vs = e3) A(i+iz+iz=6)

iy = :>=; (a[2]1=1) A (a[2]=2) A
2 (a[2] = 3) A (2+2+2 = 6) @

20

Array-based Refinement in STP

STP’s conversion of array terms to SAT is expensive
(aliz] = e1) A(aliz] = e2) A (alis] = e3) A (i+iz+iz=6)
(vi=e) A(vza=ep) A(vs = e3) A(i+iz+iz=6)

(ip=ip=> vy = Vy) ;

- 13 - V3 2~ '3 2~

iy = :>=; (a[2]1=1) A (a[2]=2) A
2 (a[2] = 3) A (2+2+2 = 6) @

vi=e =1

Vo — 62: 2

V3 — 63— 3 o1

Array-based Refinement in STP

 When unsuccessful, which axioms to add?
» Different heuristics possible

* STP finds an array index that violates an
axiom and adds all axioms involving that
index

22

Evaluation

Solver Total time (min) Timeouts

STP (baseline) 56 36

STP (array-based refinement) 10 1
s

\C - 8495 test cases from our
symbolic execution benchmarks

= Timeout set at 60s (which are
added as penalty), underestimates
performance differences

23

SMT Solvers

« SMT solvers support rich theories in classical first-
order logic with equality

— E.g., theory of Presburger arithmetic, theory of bitvectors and
arrays, theory of rationals, etc.

* Approaches for SMT solving include

— Eager translation to SAT
— DPLL[T]
— Nelson-Oppen framework for combining different theories

24

