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Why SMT?

SAT solvers operate at the level of Boolean or propositional
formulas

Many application domains generate constraints at a higher level

SMT supports rich theories 1n classical first-order logic with
equality



SMT Theories

* A theory consists of a signature St and axioms A
* Stconsists of 3 types of constants:

— Object constants refer to objects in the universe of
discourse, e.g, John, Mary,... for universe of people

— Function constants refer to functions
« Each function has an associated arity, e.g., parent has arity 1

» Object constants can be seen as function constants with arity 0
— Predicate constants refer to relations between objects
» Each predicate has an associated arity, e.g., likes has arity 2

* Ay consists of axioms which interpret some functions
and predicates



Theory of Equality T_

* Also referred to as empty theory
- St :{=ab,c,...,5Lgh ..,p,qr1,...}
e f,g,...,p,q, ... are uninterpreted functions and
predicates
* “Built-in” predicate = 1s interpreted by axioms Ar_:
— V X. X=X (reflexivity)
— VX, y.X=y=>y=X (symmetry)
~ VX, y,z.x=yNy=z=>x=2z (transitivity)
— V' Xqyee i XYoo Yo N X =y => (X, .00 X)) = (Yq,. .. Y5)
(function congruence)

(predicate congruence) 4



Theory of Equality T_

* Also known as theory of equality with
uninterpreted functions

* Uninterpreted functions are useful as an
abstraction or over-approximation mechanism

— Remember static program verification



Theory of Presburger Arithmetic

* Presburger arithmetic: allows only addition
over natural numbers

¢ S;: {0, 1, =, +}

o Ay:
— VX.(x+1=0) (zero)
— VXx.x+0=0 (plus zero)
— VX, Y. x+1 =y+1 => x=y (successor)
— VX, V. x+ (y+1) = (x+y)+1 (plus successor)

_ F[O] A (Vx. F[x] => F[x+1]) => Vx.F[x]  (induction)



Theory of Fixed-width Bitvectors

* Object constants are fixed-width bitvectors,
e.g., 011011, 001

* Functions include extraction, concatenation,
bitwise operations, arithmetic operations



Theory of Arrays

e Sypifa,b,c, ...,k ...v,w, ..., = read, write)
* At a high-level:

— read(a, i) is a binary function that returns the value of array a
at index 1

— write(a, i, v) 1s a ternary function that returns an array
identical to a except that at index 1 1t has value v

¢ AA:
— V a,li,j.i=j=>read(a, i) =read(a, j) (array congruence)
— V a,i,j,v.i=j=>read(write(a, i, v),j) =V (read-over-write 1)
- V a,i,j,v. (i =j) =>read(write(a, i, v), j) =read(a, j) (read-over-write 2)



Solving SMT queries

« Eager translation to equisatisfiable SAT formula
— Some theories are better matches than others

— Multiple translations possible, SMT solver performs
several transformations/optimizations in the process
using information available at the theory level

e E.g., simplifying x —x to 0.
 DPLL|T]
— Adapts DPLL to work at the level of theory T (theory
deduction, theory conflicts, etc.)



Combination of Theories

* (Given
— theory T, with signature St and axioms Ar,
— theory T, with signature Sy, and axioms Ar,
— an SMT solver for T,
— an SMT solver for T,

* Can we produce a solver for T; U T,?

— T, U T, with signature St U St and axioms
Ar, U Aq,
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Nelson-Oppen Framework

* Framework for deciding combined theories
under certain assumptions, €.g, only for
quantifier-free theories

« Examples

— theory of arrays and bitvectors
— theory of arrays and integers
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Nelson-Oppen Framework

* Two phases:
— Purification: transform F 1nto equisatisfiable
formula F° = F; /A F, such that
* F, belongs only to T,
 F, belongs only to T,
— Equality propagation: propagate equalities
between theories
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STP solver

« SMT solver for the theory of bitvectors and arrays
« Based on eager translation to SAT (uses MiniSAT)

* Developed at Stanford by Ganesh and Dill, mitially
targeted to, and driven by, EXE
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Theory of Bitvectors and Arrays

* (Can accurately encode the semantics of C programs

— Model each memory block as an array of 8-bit BVs
— Bind types to expressions, not bits

char buf[N]; // symbolic

struct pkt1 { char x, y, v, w; int z; } *pa = (struct pkt1*) buf;
struct pkt2 { unsigned i, j; } *pb = (struct pkt2*) buf;

if (pa[2].v < 0) { assert(pb[2].i >= 1<<23); }

buf: ARRAY BITVECTOR (32)OF BITVECTOR(8)

SBVLT (buf[18] , 0x00)

BVGE (buf [19] @buf[18] @buf[17]@buf[16], 0x00800000)




Conversion to SAT

« Each arithmetic operation on bitvectors can be
encoded as a circuit / formula

* E.g., addition translated as a ripple-carry adder

e The main difficulty 1s removing arrays

e This 1s done starting from the array axioms



Eliminating Arrays

 Transformation 1: eliminate writes
« read(write(A, 1, v), j) < ite(i=], v, read(A, J))

« a write by itself (not inside a read) 1s meaningless
and can be discarded

e Transformation 2: eliminate reads

a) replace each syntactically-unique read by a fresh
variable

b) add array axioms: for each pair of indexes, if the
indexes are equal, so are the corresponding
introduced variables



Eliminating Reads

(ali;] = e1) A (aliz] = ez) A (aliz] = e3) A (ig+iz+iz=6)
(vi = e)) A(vz = ex) A(vs = e3) A (ig+ip+iz=6)

(i1=i2=>vi=Vv) A(ip=iz=>vi=v3) A(ip = i3 => v, = v3)

STP’s read elimination 1s expensive:

s
\-—~ Expands each formula by n-(n-1)/2 terms, where
| n 1s the number of syntactically distinct indexes
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Array-based Refinement in STP

STP’s conversion of array terms to SAT is expensive
(aliz] = e1) A(aliz] = e2) A (alis] = e3) A (i+iz+iz=6)
(vi=e)) A(va=ez) A(vs = e3) A(ir+iz+iz=6)

Approximation ‘ Original formula
UNSATISFIABLE UNSATISFIABLE




Array-based Refinement in STP

STP’s conversion of array terms to SAT is expensive
(aliz] = e1) A(aliz] = e2) A (alis] = e3) A (i+iz+iz=6)
(vi=e) A(vza=ep) A(vs = e3) A(i+iz+iz=6)

(a[3]=3) A (1+2+3 = 6)

i;=3 J§> (a[1]=1) A(a[2]=2) A YA
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Array-based Refinement in STP

STP’s conversion of array terms to SAT is expensive
(aliz] = e1) A(aliz] = e2) A (alis] = e3) A (i+iz+iz=6)
(vi=e) A(vza=ep) A(vs = e3) A(i+iz+iz=6)

iy = :>=; (a[2]1=1) A (a[2]=2) A
2 (a[2] = 3) A (2+2+2 = 6) @
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Array-based Refinement in STP

STP’s conversion of array terms to SAT is expensive
(aliz] = e1) A(aliz] = e2) A (alis] = e3) A (i+iz+iz=6)
(vi=e) A(vza=ep) A(vs = e3) A(i+iz+iz=6)

(ip=ip=> vy = Vy) ;

- 13 - V3 2~ '3 2~

iy = :>=; (a[2]1=1) A (a[2]=2) A
2 (a[2] = 3) A (2+2+2 = 6) @

vi=e =1

Vo — 62: 2

V3 — 63— 3 o1




Array-based Refinement in STP

 When unsuccessful, which axioms to add?
» Different heuristics possible

* STP finds an array index that violates an
axiom and adds all axioms involving that
index
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Evaluation

Solver Total time (min) Timeouts

STP (baseline) 56 36

STP (array-based refinement) 10 1
s

\C - 8495 test cases from our
symbolic execution benchmarks

= Timeout set at 60s (which are
added as penalty), underestimates
performance differences
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SMT Solvers

« SMT solvers support rich theories in classical first-
order logic with equality

— E.g., theory of Presburger arithmetic, theory of bitvectors and
arrays, theory of rationals, etc.

* Approaches for SMT solving include

— Eager translation to SAT
— DPLL[T]
— Nelson-Oppen framework for combining different theories
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