SMT Solvers

Cristian Cadar

Department of Computing
Imperial College London

Imperial College
 London

Software Reliability Course
Autumn 2016

Why SMT?

- SAT solvers operate at the level of Boolean or propositional formulas
- Many application domains generate constraints at a higher level
- SMT supports rich theories in classical first-order logic with equality

SMT Theories

- A theory consists of a signature S_{T} and axioms A_{T}
- S_{T} consists of 3 types of constants:
- Object constants refer to objects in the universe of discourse, e.g, John, Mary,... for universe of people
- Function constants refer to functions
- Each function has an associated arity, e.g., parent has arity 1
- Object constants can be seen as function constants with arity 0
- Predicate constants refer to relations between objects
- Each predicate has an associated arity, e.g., likes has arity 2
- A_{T} consists of axioms which interpret some functions and predicates

Theory of Equality $\mathrm{T}_{=}$

- Also referred to as empty theory
$-\mathrm{S}_{\mathrm{T}_{=}}:\{=, \mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{f}, \mathrm{g}, \mathrm{h}, \ldots, \mathrm{p}, \mathrm{q}, \mathrm{r}, \ldots\}$
- $\mathrm{f}, \mathrm{g}, \ldots, \mathrm{p}, \mathrm{q}, \ldots$ are uninterpreted functions and predicates
- "Built-in" predicate $=$ is interpreted by axioms $\mathrm{A}_{\mathrm{T}_{=}}$:

$$
\begin{array}{lc}
-\forall x . x=x & \text { (reflexivity) } \\
-\forall x, y \cdot x=y=>y=x & \text { (symmetry) } \\
-\forall x, y, z . x=y \wedge y=z=>x=z & \text { (transitivity) } \\
-\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots y_{n} . \wedge x_{i}=y_{i}=>f\left(x_{1}, \ldots x_{n}\right)=f\left(y_{1}, \ldots y_{n}\right)
\end{array}
$$

(function congruence)
$-\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots y_{n} . \wedge x_{i}=y_{i}=>p\left(x_{1}, \ldots x_{n}\right) \Leftrightarrow p\left(y_{1}, \ldots y_{n}\right)$ (predicate congruence)

Theory of Equality $\mathrm{T}_{=}$

- Also known as theory of equality with uninterpreted functions
- Uninterpreted functions are useful as an abstraction or over-approximation mechanism
- Remember static program verification

Theory of Presburger Arithmetic

- Presburger arithmetic: allows only addition over natural numbers
- $\mathrm{S}_{\mathbb{N}}:\{0,1,=,+\}$
- $\mathrm{A}_{\mathbb{N}}$:

$$
\begin{array}{lr}
-\forall x \cdot \neg(x+1=0) & \text { (zero) } \\
-\forall x \cdot x+0=0 & \text { (plus zero) } \\
-\forall x, y \cdot x+1=y+1=>x=y & \text { (successor) } \\
-\forall x, y \cdot x+(y+1)=(x+y)+1 & \text { (plus successor) } \\
-F[0] \wedge(\forall x \cdot F[x]=>F[x+1])=>\forall x \cdot F[x] & \text { (induction) }
\end{array}
$$

Theory of Fixed-width Bitvectors

- Object constants are fixed-width bitvectors, e.g., 011011, 001
- Functions include extraction, concatenation, bitwise operations, arithmetic operations

Theory of Arrays

- $\mathrm{S}_{\mathrm{A}}:\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{i}, \mathrm{j}, \mathrm{k}, \ldots \mathrm{v}, \mathrm{w}, \ldots,=$, read, write $)$
- At a high-level:
$-\operatorname{read}(a, i)$ is a binary function that returns the value of array a at index i
- write($\mathbf{a}, \mathbf{i}, \mathbf{v}$) is a ternary function that returns an array identical to a except that at index i it has value v
- A_{A} :
$-\quad \forall \mathrm{a}, \mathrm{i}, \mathrm{j} . \mathrm{i}=\mathrm{j}=>\operatorname{read}(\mathrm{a}, \mathrm{i})=\operatorname{read}(\mathrm{a}, \mathrm{j})$
$-\quad \forall \mathrm{a}, \mathrm{i}, \mathrm{j}, \mathrm{v} . \mathrm{i}=\mathrm{j}=>\operatorname{read}($ write $(\mathrm{a}, \mathrm{i}, \mathrm{v}), \mathrm{j})=\mathrm{v}$ (array congruence)
$-\quad \forall \mathrm{a}, \mathrm{i}, \mathrm{j}, \mathrm{v} . \neg(\mathrm{i}=\mathrm{j})=>\operatorname{read}(\operatorname{write}(\mathrm{a}, \mathrm{i}, \mathrm{v}), \mathrm{j})=\operatorname{read}(\mathrm{a}, \mathrm{j})$ (read-over-write 1)
(read-over-write 2)

Solving SMT queries

- Eager translation to equisatisfiable SAT formula
- Some theories are better matches than others
- Multiple translations possible, SMT solver performs several transformations/optimizations in the process using information available at the theory level
- E.g., simplifying $\mathrm{x}-\mathrm{x}$ to 0 .
- DPLL[T]
- Adapts DPLL to work at the level of theory T (theory deduction, theory conflicts, etc.)

Combination of Theories

- Given
- theory T_{1} with signature $S_{T_{1}}$ and axioms $A_{T_{1}}$
- theory T_{2} with signature $\mathrm{S}_{\mathrm{T}_{2}}$ and axioms $\mathrm{A}_{\mathrm{T}_{2}}$
- an SMT solver for T_{1}
- an SMT solver for T_{2}
- Can we produce a solver for $\mathrm{T}_{1} \cup \mathrm{~T}_{2}$?
$-T_{1} \cup T_{2}$ with signature $S_{T_{1}} \cup S_{T_{2}}$ and axioms $\mathrm{A}_{\mathrm{T}_{1}} \cup \mathrm{~A}_{\mathrm{T}_{2}}$

Nelson-Oppen Framework

- Framework for deciding combined theories under certain assumptions, e.g, only for quantifier-free theories
- Examples
- theory of arrays and bitvectors
- theory of arrays and integers

Nelson-Oppen Framework

- Two phases:
- Purification: transform F into equisatisfiable formula $F^{\prime}=F_{1} \wedge F_{2}$ such that
- F_{1} belongs only to T_{1}
- F_{2} belongs only to T_{2}
- Equality propagation: propagate equalities between theories

STP solver

- SMT solver for the theory of bitvectors and arrays
- Based on eager translation to SAT (uses MiniSAT)
- Developed at Stanford by Ganesh and Dill, initially targeted to, and driven by, EXE

Theory of Bitvectors and Arrays

- Can accurately encode the semantics of C programs
- Model each memory block as an array of 8-bit BVs
- Bind types to expressions, not bits

char buf[N]; // symbolic

struct pkt1 \{ char x, y, v, w; int z; \} *pa = (struct pkt1*) buf; struct pkt2 \{ unsigned i, j; \} *pb = (struct pkt2*) buf; if (pa[2].v < 0) \{ assert(pb[2].i >= 1<<23); \}
buf: ARRAY BITVECTOR(32)OF BITVECTOR(8)
SBVLT (buf [18], 0x00)
BVGE (buf [19] @buf[18] @buf [17]@buf[16], 0x00800000)

Conversion to SAT

- Each arithmetic operation on bitvectors can be encoded as a circuit / formula
- E.g., addition translated as a ripple-carry adder
- The main difficulty is removing arrays
- This is done starting from the array axioms

Eliminating Arrays

- Transformation 1: eliminate writes
- $\operatorname{read}(\operatorname{write}(A, i, v), j) \Leftrightarrow \operatorname{ite}(i=j, v, \operatorname{read}(A, j))$
- a write by itself (not inside a read) is meaningless and can be discarded
- Transformation 2: eliminate reads
a) replace each syntactically-unique read by a fresh variable
b) add array axioms: for each pair of indexes, if the indexes are equal, so are the corresponding introduced variables

Eliminating Reads

$$
\begin{gathered}
\left(a\left[i_{1}\right]=e_{1}\right) \wedge\left(a\left[i_{2}\right]=e_{2}\right) \wedge\left(a\left[i_{3}\right]=e_{3}\right) \wedge\left(i_{1}+i_{2}+i_{3}=6\right) \\
\left(v_{1}=e_{1}\right) \wedge\left(v_{2}=e_{2}\right) \wedge\left(v_{3}=e_{3}\right) \wedge\left(i_{1}+i_{2}+i_{3}=6\right) \\
\left(i_{1}=i_{2} \Rightarrow v_{1}=v_{2}\right) \wedge\left(i_{1}=i_{3} \Rightarrow v_{1}=v_{3}\right) \wedge\left(i_{2}=i_{3} \Rightarrow v_{2}=v_{3}\right)
\end{gathered}
$$

STP's read elimination is expensive:
Expands each formula by $n \cdot(\mathrm{n}-1) / 2$ terms, where n is the number of syntactically distinct indexes

Array-based Refinement in STP

STP's conversion of array terms to SAT is expensive

$$
\begin{gathered}
\left(a\left[i_{1}\right]=e_{1}\right) \wedge\left(a\left[i_{2}\right]=e_{2}\right) \wedge\left(a\left[i_{3}\right]=e_{3}\right) \wedge\left(i_{1}+i_{2}+i_{3}=6\right) \\
\left(v_{1}=e_{1}\right) \wedge\left(v_{2}=e_{2}\right) \wedge\left(v_{3}=e_{3}\right) \wedge\left(i_{1}+i_{2}+i_{3}=6\right) \\
\left(i_{1}=i_{2} \rightarrow v_{1}=v_{2}\right) \wedge\left(i_{1}=i_{3} \rightarrow v_{1}=v_{3}\right) \wedge\left(i_{2}=i_{3} \rightarrow v_{2}=v_{3}\right)
\end{gathered}
$$

Approximation UNSATISFIABLE

Original formula UNSATISFIABLE

Array-based Refinement in STP

STP's conversion of array terms to SAT is expensive

$$
\left(a\left[i_{1}\right]=e_{1}\right) \wedge\left(a\left[i_{2}\right]=e_{2}\right) \wedge\left(a\left[i_{3}\right]=e_{3}\right) \wedge\left(i_{1}+i_{2}+i_{3}=6\right)
$$

$$
\left(v_{1}=e_{1}\right) \wedge\left(v_{2}=e_{2}\right) \wedge\left(v_{3}=e_{3}\right) \wedge\left(i_{1}+i_{2}+i_{3}=6\right)
$$

$$
\left(i_{1}=i_{2} \rightarrow v_{1}=v_{2}\right) \wedge\left(i_{1}=i_{3} \rightarrow v_{1}=v_{3}\right) \wedge\left(i_{2}=i_{3} \rightarrow v_{2}=v_{3}\right)
$$

$$
\begin{array}{|c|}
\hline \mathrm{i}_{1}=1 \\
\mathrm{i}_{2}=2 \\
\mathrm{i}_{3}=3 \\
\mathrm{v}_{1}=\mathrm{e}_{1}=1 \\
\mathrm{v}_{2}=\mathrm{e}_{2}=2 \\
\mathrm{v}_{3}=\mathrm{e}_{3}=3 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& (a[1]=1) \wedge(a[2]=2) \wedge \\
& (a[3]=3) \wedge(1+2+3=6) \\
& \hline
\end{aligned}
$$

Array-based Refinement in STP

STP's conversion of array terms to SAT is expensive

$$
\begin{gathered}
\left(a\left[i_{1}\right]=e_{1}\right) \wedge\left(a\left[i_{2}\right]=e_{2}\right) \wedge\left(a\left[i_{3}\right]=e_{3}\right) \wedge\left(i_{1}+i_{2}+i_{3}=6\right) \\
\left(v_{1}=e_{1}\right) \wedge\left(v_{2}=e_{2}\right) \wedge\left(v_{3}=e_{3}\right) \wedge\left(i_{1}+i_{2}+i_{3}=6\right) \\
\left(i_{1}=i_{2} \rightarrow v_{1}=v_{2}\right) \wedge\left(i_{1}=i_{3} \rightarrow v_{1}=v_{3}\right) \wedge\left(i_{2}=i_{3} \rightarrow v_{2}=v_{3}\right)
\end{gathered}
$$

$$
\begin{array}{|c|}
\hline \mathrm{i}_{1}=2 \\
\mathrm{i}_{2}=2 \\
\mathrm{i}_{3}=2 \\
\mathrm{v}_{1}=\mathrm{e}_{1}=1 \\
\mathrm{v}_{2}=\mathrm{e}_{2}=2 \\
\mathrm{v}_{3}=\mathrm{e}_{3}=3 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& (a[2]=1) \wedge(a[2]=2) \wedge \\
& (a[2]=3) \wedge(2+2+2=6)
\end{aligned}
$$

Array-based Refinement in STP

STP's conversion of array terms to SAT is expensive

$$
\begin{gathered}
\left(a\left[i_{1}\right]=e_{1}\right) \wedge\left(a\left[i_{2}\right]=e_{2}\right) \wedge\left(a\left[i_{3}\right]=e_{3}\right) \wedge\left(i_{1}+i_{2}+i_{3}=6\right) \\
\left(v_{1}=e_{1}\right) \wedge\left(v_{2}=e_{2}\right) \wedge\left(v_{3}=e_{3}\right) \wedge\left(i_{1}+i_{2}+i_{3}=6\right) \\
\left(i_{1}=i_{2} \rightarrow v_{1}=v_{2}\right) \wedge\left(i_{1}=i_{3} \rightarrow v_{1}=v_{3}\right) \wedge\left(i_{2}=i_{3} \rightarrow v_{2}=v_{3}\right) \\
\left(\begin{array}{c}
i_{1}=2 \\
i_{2}=2 \\
i_{3}=2 \\
v_{1}=e_{1}=1 \\
v_{2}=e_{2}=2 \\
v_{3}=e_{3}=3
\end{array}\right.
\end{gathered}
$$

Array-based Refinement in STP

- When unsuccessful, which axioms to add?
- Different heuristics possible
- STP finds an array index that violates an axiom and adds all axioms involving that index

Evaluation

Solver	Total time (min)	Timeouts
STP (baseline)	56	36
STP (array-based refinement)	10	1

8495 test cases from our
symbolic execution benchmarks

- Timeout set at 60s (which are added as penalty), underestimates performance differences

SMT Solvers

- SMT solvers support rich theories in classical firstorder logic with equality
- E.g., theory of Presburger arithmetic, theory of bitvectors and arrays, theory of rationals, etc.
- Approaches for SMT solving include
- Eager translation to SAT
- DPLL[T]
- Nelson-Oppen framework for combining different theories

