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Why SMT?

• SAT solvers operate at the level of Boolean or propositional 
formulas

• Many application domains generate constraints at a higher level

• SMT supports rich theories in classical first-order logic with 
equality
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SMT Theories

• A theory consists of a signature ST and axioms AT

• ST consists of 3 types of constants:
– Object constants refer to objects in the universe of 

discourse, e.g, John, Mary,… for universe of people
– Function constants refer to functions

• Each function has an associated arity, e.g., parent has arity 1
• Object constants can be seen as function constants with arity 0

– Predicate constants refer to relations between objects
• Each predicate has an associated arity, e.g., likes has arity 2

• AT consists of axioms which interpret some functions 
and predicates
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Theory of Equality T=

• Also referred to as empty theory
– ST= : {=, a, b, c, … , f, g, h, …, p, q, r, …}

• f, g, …, p, q, … are uninterpreted functions and 
predicates

• “Built-in” predicate = is interpreted by axioms AT= :
– ∀ x. x = x                                    (reflexivity)
– ∀x, y. x = y => y = x                   (symmetry)
– ∀x, y, z. x = y /\ y = z => x = z   (transitivity)
– ∀x1,…,xn,y1,…yn. /\ xi = yi => f(x1, … xn) = f(y1,… yn)                                

(function congruence)
– ∀x1,…,xn,y1,…yn. /\ xi = yi => p(x1, … xn) ó p(y1,… yn)                                

(predicate congruence) 4



Theory of Equality T=

• Also known as theory of equality with 
uninterpreted functions

• Uninterpreted functions are useful as an 
abstraction or over-approximation mechanism
– Remember static program verification
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Theory of Presburger Arithmetic

• Presburger arithmetic: allows only addition 
over natural numbers

• Sℕ: {0, 1, =, +}
• Aℕ:

– ∀x. ¬(x+1 = 0) (zero)
– ∀x. x+0 = 0                                     (plus zero)
– ∀x, y. x+1 = y+1 => x=y                (successor)
– ∀x, y. x+ (y+1) = (x+y)+1              (plus successor)
– F[0] /\ (∀x. F[x] => F[x+1]) => ∀x.F[x] (induction)
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Theory of Fixed-width Bitvectors

• Object constants are fixed-width bitvectors, 
e.g., 011011, 001

• Functions include extraction, concatenation, 
bitwise operations, arithmetic operations
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Theory of Arrays

• SA: {a, b, c, …, i, j, k, …v, w, …, =, read, write)
• At a high-level:

– read(a, i) is a binary function that returns the value of array a 
at index i

– write(a, i, v) is a ternary function that returns an array 
identical to a except that at index i it has value v

• AA:
– ∀ a, i, j. i = j => read(a, i) = read(a, j)                          (array congruence)
– ∀ a, i, j, v. i = j => read(write(a, i, v), j) = v                      (read-over-write 1)
– ∀ a, i, j, v. ¬(i = j) => read(write(a, i, v), j) = read(a, j)  (read-over-write 2)
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Solving SMT queries

• Eager translation to equisatisfiable SAT formula
– Some theories are better matches than others
– Multiple translations possible, SMT solver performs 

several transformations/optimizations in the process 
using information available at the theory level

• E.g., simplifying x –x to 0.

• DPLL[T] 
– Adapts DPLL to work at the level of theory T (theory 

deduction, theory conflicts, etc.)
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Combination of Theories

• Given 
– theory T1 with signature ST1 and axioms AT1
– theory T2 with signature ST2 and axioms AT2
– an SMT solver for T1

– an SMT solver for T2

• Can we produce a solver for T1 ∪ T2 ?
– T1 ∪ T2 with signature ST1 ∪ ST2 and axioms

AT1 ∪ AT2
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Nelson-Oppen Framework

• Framework for deciding combined theories 
under certain assumptions, e.g, only for 
quantifier-free theories

• Examples 
– theory of arrays and bitvectors
– theory of arrays and integers
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Nelson-Oppen Framework

• Two phases:
– Purification: transform F into equisatisfiable 

formula F’ = F1 /\ F2 such that
• F1 belongs only to T1

• F2 belongs only to T2

– Equality propagation: propagate equalities 
between theories
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STP solver

• SMT solver for the theory of bitvectors and arrays
• Based on eager translation  to SAT (uses MiniSAT)
• Developed at Stanford by Ganesh and Dill, initially 

targeted to, and driven by, EXE
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Theory of Bitvectors and Arrays

• Can accurately encode the semantics of C programs
– Model each memory block as an array of 8-bit BVs
– Bind types to expressions, not bits

char buf[N]; // symbolic
struct pkt1 { char x, y, v, w; int z; } *pa = (struct pkt1*) buf;
struct pkt2 { unsigned i, j; } *pb = (struct pkt2*) buf;
if (pa[2].v < 0) { assert(pb[2].i >= 1<<23); } 

buf: ARRAY BITVECTOR(32)OF BITVECTOR(8)

SBVLT(buf[18], 0x00)  

BVGE(buf[19]@buf[18]@buf[17]@buf[16], 0x00800000)



• Each arithmetic operation on bitvectors can be 
encoded as a circuit / formula
• E.g., addition translated as a ripple-carry adder 

• The main difficulty is removing arrays
• This is done starting from the array axioms

Conversion to SAT



• Transformation 1: eliminate writes
• read(write(A, i, v), j) ó ite(i=j, v, read(A, j))
• a write by itself (not inside a read) is meaningless 

and can be discarded
• Transformation 2: eliminate reads

a) replace each syntactically-unique read by a fresh 
variable

b) add array axioms: for each pair of indexes, if the 
indexes are equal, so are the corresponding 
introduced variables

Eliminating Arrays



Eliminating Reads

STP’s read elimination is expensive:

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6)

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6)
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3)

Expands each formula by n·(n-1)/2 terms, where 
n is the number of syntactically distinct indexes
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Array-based Refinement in STP

STP’s conversion of array terms to SAT is expensive

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6)

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6)
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3)

Approximation 
UNSATISFIABLE

Original formula
UNSATISFIABLE
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Array-based Refinement in STP

i1 = 1
i2 = 2
i3 = 3

v1 = e1= 1
v2 = e2= 2
v3 = e3= 3

(a[1] = 1) Λ (a[2] = 2) Λ
(a[3] = 3) Λ (1+2+3 = 6)

STP’s conversion of array terms to SAT is expensive

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6)

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6)
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3)
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Array-based Refinement in STP

i1 = 2
i2 = 2
i3 = 2

v1 = e1= 1
v2 = e2= 2
v3 = e3= 3

(a[2] = 1) Λ (a[2] = 2) Λ
(a[2] = 3) Λ (2+2+2 = 6)

STP’s conversion of array terms to SAT is expensive

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6)

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6)
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3)

20



Array-based Refinement in STP

i1 = 2
i2 = 2
i3 = 2

v1 = e1= 1
v2 = e2= 2
v3 = e3= 3

(a[2] = 1) Λ (a[2] = 2) Λ
(a[2] = 3) Λ (2+2+2 = 6)

STP’s conversion of array terms to SAT is expensive

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6)

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6)
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3)
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Array-based Refinement in STP

• When unsuccessful, which axioms to add?
• Different heuristics possible
• STP finds an array index that violates an 

axiom and adds all axioms involving that 
index
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Evaluation

Solver Total time (min) Timeouts

STP (baseline) 56 36

STP (array-based refinement) 10 1

§ 8495 test cases from our 
symbolic  execution benchmarks

§ Timeout set at 60s (which are 
added as penalty), underestimates  
performance differences
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SMT Solvers
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• SMT solvers support rich theories in classical first-
order logic with equality
– E.g., theory of Presburger arithmetic, theory of bitvectors and 

arrays, theory of rationals, etc.
• Approaches for SMT solving include

– Eager translation to SAT
– DPLL[T]
– Nelson-Oppen framework for combining different theories


