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SAT Problem

input a Boolean formula ϕ (usually in CNF)

decide whether or not there exists an assignment of ϕ’s variables
under which ϕ evaluates to true

I SAT Solver is an algorithm (and tool) for solving the SAT
problem.

I SAT is NP-complete [Cook’70]
I SAT algorithms worst-case exponential in time

I Modern SAT solvers employ various heuristics
I Perform exceptionally well in practice

I Have had deep impact on fields such as testing and verification
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DPLL

I Most modern SAT solvers based on the DPLL framework

I Due to Davis, Putnam, Loveland, Logemann, 1962

I DPLL operates on formulas in normal form, which we will
review shortly
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Boolean Formulas and CNF

Boolean Formulas

I Defined inductively by the following grammar:

ϕ ::= true | false | x | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ϕ1 ↔ ϕ2

I x is a variable

I Formulas of the form x and ¬x are literals

I Example p ↔ (q → ¬r)
I Variables appearing in the formula?

I Literals appearing in the formula?
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Normal Forms

I A normal form of a formula F is another formula F ′ such that
F is equivalent to F ′, but F ′ obeys certain syntactic
restrictions.

I There are three kinds of normal forms that are interesting in
propositional logic:

I Negation Normal Form (NNF)

I Disjunctive Normal Form (DNF)

I Conjunctive Normal Form (CNF)
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Negation Normal Form (NNF)

Negation Normal Form requires two syntactic restrictions:

I The only logical connectives are ¬,∧,∨ (i.e., no →, ↔)

I Negations are only applied to literals

I Is formula p ∨ (¬q ∧ (r ∨ ¬s)) in NNF?

I What about p ∨ (¬q ∧ ¬(¬r ∧ s))?

I What about p ∨ (¬q ∧ (¬¬r ∨ ¬s))?
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Conversion to NNF I

I To make sure the only logical connectives are ¬,∧,∨, need to
eliminate → and ↔

I How do we express F1 → F2 using ∨,∧,¬?

I How do we express F1 ↔ F2 using only ¬,∧ . ∨?
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Conversion to NNF II

I Also need to ensure negations appear only in literals: push
negations in

I Use DeMorgan’s laws to distribute ¬ over ∧ and ∨:

¬(F1 ∧ F2)⇔ ¬F1 ∨ ¬F2

¬(F1 ∨ F2)⇔ ¬F1 ∧ ¬F2

I We also disallow double negations:

¬¬F ⇔ F
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NNF Example

Convert F : ¬(p → (p ∧ q)) to NNF
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Disjunctive Normal Form (DNF)

I A formula in disjunctive normal form is a disjunction of
conjunction of literals.∨

i

∧
j

`i ,j for literals `i ,j

I i.e., ∨ can never appear inside ∧ or ¬

I Called disjunctive normal form because disjuncts are at the
outer level

I Each inner conjunction is called a clause

I Question: If a formula is in DNF, is it also in NNF?
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Conversion to DNF

I To convert formula to DNF, first convert it to NNF.

I Then, distribute ∧ over ∨:

(F1 ∨ F2) ∧ F3 ⇔ (F1 ∧ F3) ∨ (F2 ∧ F3)

F1 ∧ (F2 ∨ F3) ⇔ (F1 ∧ F2) ∨ (F1 ∧ F3)
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Example

Convert F : (q1 ∨ ¬¬q2) ∧ (¬r1 → r2) into DNF
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DNF and Satisfiability

I Claim: If formula is in DNF, trivial to determine satisfiability.
How?

I

I

I Idea: To determine satisfiability, convert formula to DNF and
just do a syntactic check.
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DNF and Blow-up in formula size

I This idea is completely impractical. Why?

I Consider formula: (F1 ∨ F2) ∧ (F3 ∨ F4)

I In DNF:

(F1 ∧ F3) ∨ (F1 ∧ F4) ∨ (F2 ∧ F3) ∨ (F2 ∧ F4)

I Every time we distribute, formula size doubles!

I Moral: DNF conversion causes exponential blow-up in size!

I Checking satisfiability by converting to DNF is almost as bad
as truth tables!
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Conjunctive Normal Form (CNF)

I A formula in conjuctive normal form is a conjunction of
disjunction of literals.∧

i

∨
j

`i ,j for literals `i ,j

I i.e., ∧ not allowed inside ∨,¬.

I Called conjunctive normal form because conjucts are at the
outer level

I Each inner disjunction is called a clause

I Is formula in CNF also in NNF?
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Conversion to CNF

I To convert formula to CNF, first convert it to NNF.

I Then, distribute ∨ over ∧:

(F1 ∧ F2) ∨ F3 ⇔ (F1 ∨ F3) ∧ (F2 ∨ F3)

F1 ∨ (F2 ∧ F3) ⇔ (F1 ∨ F2) ∧ (F1 ∨ F3)
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CNF Conversion Example

Convert F : (p ↔ (q → r)) into CNF
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DNF vs. CNF

I Fact: Unlike DNF, it is not trivial to determine satisfiability of
formula in CNF.

I Does CNF conversion cause exponential blow-up in size?

I News: But almost all SAT solvers first convert formula to
CNF before solving!
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Why CNF?

I Question: If it is just as expensive to convert formula to CNF
as to DNF, why do solvers convert to CNF although it is
much easier to determine satisfiability in DNF?

I
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Equisatisfiability

I Two formulas F and F ′ are equisatisfiable iff:

F is satisfiable if and only if F ′ is satisfiable

II If two formulas are equisatisfiable, are they equivalent?

I Example:

I

I Equisatisfiability is a much weaker notion than equivalence.

I But useful if all we want to do is determine satisfiability.
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The Plan

I To determine satisfiability of F , convert formula to
equisatisfiable formula F ′ in CNF

I Use an algorithm (DPLL) to decide satisfiability of F ′

I Since F ′ is equisatisfiable to F , F is satifiable iff algorithm
decides F ′ is satisfiable

I Big question: How do we convert formula to equisatisfiable
formula without causing exponential blow-up in size?
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Tseitin’s Transformation

Tseitin’s transformation converts formula F
to equisatisfiable formula F ′ in CNF
with only a linear increase in size.
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Tseitin’s Transformation I

I Step 1: Introduce a new variable pG for every subformula G
of F (unless G is already a single variable).

I For instance, if F = G1 ∧ G2, introduce two variables pG1

and pG2 representing G1 and G2 respectively.

I pG1 is said to be representative of G1 and pG2 is
representative of G2.
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Tseitin’s Transformation II

I Step 2: Consider each subformula

G : G1 ◦G2 (◦ arbitrary boolean connective)

I Stipulate representative of G is equivalent to representative of
G1 ◦G2

pG ↔ pG1 ◦ pG2

I Step 3: Convert pG ↔ pG1 ◦ pG2 to equivalent CNF (by
converting to NNF and distributing ∨’s over ∧’s).

I Observe: Since pG ↔ pG1 ◦ pG2 contains at most three
propositional variables and exactly two connectives, size of
this formula in CNF is bound by a constant.
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Tseitin’s Transformation II

I Given original formula F , let pF be its representative and let
SF be the set of all subformulas of F (including F itself).

I Then, introduce the formula

pF ∧
∧

G=(G1◦G2)∈SF

CNF (pg ↔ pg1 ◦ pg2)

I Claim: This formula is equisatisfiable to F .

I The proof is by structural induction

I Formula is also in CNF because conjunction of CNF formulas
is in CNF.
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Tseitin’s Transformation and Size

I Using this transformation, we converted F to an
equisatisfiable CNF formula F ′.

I What about the size of F ′?

pF ∧
∧

G=(G1◦G2)∈SF

CNF (pg ↔ pg1 ◦ pg2)

I |SF | is bound by the number of connectives in F .

I Each formula CNF (pg ↔ pg1 ◦ pg2) has constant size.

I Thus, trasformation causes only linear increase in formula size.
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Tseitin’s Transformation Example

Convert F : (p ∨ q)→ (p ∧ ¬r) to equisatisfiable CNF formula.

1.

2.

3.
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SAT Solvers

I A model is a (total or partial) assignment of variables to > or
⊥ that makes the formula >

I How do you map the assignment to F’ to an assignment to F?
I Simply drop assignments to new representative variables
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DPLL: Historical Perspective

I Almost all SAT solvers today are based on an algorithm called
DPLL (Davis-Putnam-Logemann-Loveland)

I 1962: the original algorithm known as DP (Davis-Putnam)
⇒“simple” procedure for automated theorem proving

I Davis and Putnam hired two
programmers, George Logemann
and David Loveland, to implement
their ideas on the IBM 704.

I Not all of their ideas worked out as
planned ⇒ refined algorithm to
what is known today as DPLL
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DPLL insight

I There are two distinct ways to approach the boolean
satisfiability problem:

I Search
I Find satisfying assignment by searching through all possible

assignments ⇒ most basic incarnation: truth table!

I Deduction
I Deduce new facts from set of known facts ⇒ application of

proof rules, semantic argument method

I DPLL combines search and deduction in a very effective way!

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 30/76



Deduction in DPLL

I Deductive principle underlying DPLL is propositional
resolution

I Resolution can only be applied to formulas in CNF

I SAT solvers convert formulas to CNF to be able to perform
resolution
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Propositional Resolution

I Consider two clauses in CNF:

C1 : (l1 ∨ . . . p . . . ∨ lk ) C2 : (l ′1 ∨ . . .¬p . . . ∨ l ′n)

I From these, we can deduce a new clause C3, called resolvent:

C3 : (l1 ∨ . . . ∨ lk ∨ l ′1 ∨ . . . . . . ∨ l ′n)

I Correctness:

I Suppose p is assigned >: Since C2 must be satisfied and since
¬p is ⊥, (l ′1 ∨ . . . . . . ∨ l ′n) must be true.

I Suppose p is assigned ⊥: Since C1 must be satisfied and since
p is ⊥, (l1 ∨ . . . . . . ∨ lk ) must be true.

I Thus, C3 must be true.
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Unit Resolution

I DPLL uses a restricted form of resolution, known as unit
resolution.

I Unit resolution is propositional resolution, but one of the
clauses must be a unit clause (i.e., contains only one literal)

I C1 : p C2 : (l1 ∨ . . .¬p . . . ∨ ln)

I Resolvent: (l1 ∨ . . . ∨ ln)

I Performing unit resolution on C1 and C2 is same as replacing
p with true in the original clauses.

I In DPLL, all possible applications of unit resolution called
Boolean Constraint Propagation (BCP).
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Boolean Constraint Propagation (BCP) Example

I Apply BCP to CNF formula:

(p) ∧ (¬p ∨ q) ∧ (r ∨ ¬q ∨ s)

I Resolvent of first and second clause:

I New formula:

I Apply unit resolution again:

I No more unit resolution possible, so this is the result of BCP.
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Basic DPLL

bool DPLL(φ)
{
1. φ′ = BCP(φ)
2. if(φ′ = >) then return SAT;
3. else if(φ′ = ⊥) then return UNSAT;
4. p = choose var(φ′);
5. if(DPLL(φ′[p 7→ >])) then return SAT;
6. else return (DPLL(φ′[p 7→ ⊥]));
}

I Recursive procedure; input is formula in CNF

I Formula is > if no more clauses left

I Formula becomes ⊥ if we derive ⊥ due to unit resolution
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An Optimization: Pure Literal Propagation

I If variable p occurs only positively in the formula (i.e., no
¬p), p must be set to >

I Similarly, if p occurs only negatively (i.e., only appears as
¬p), p must be set to ⊥

I This is known as Pure Literal Propagation (PLP).
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DPLL with Pure Literal Propagation

bool DPLL(φ)
{
1. φ′ = BCP(φ)
2. φ′′ = PLP(φ′)
3. if(φ′′ = >) then return SAT;
4. else if(φ′′ = ⊥) then return UNSAT;
5. p = choose var(φ′′);
6. if(DPLL(φ′′[p 7→ >])) then return SAT;
7. else return (DPLL(φ′′[p 7→ ⊥]));
}
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Example

F : (¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r)

I No BCP possible because no unit clause

I No PLP possible because there are no pure literals

I Choose variable q to branch on:

F [q 7→ >] : (r) ∧ (¬r) ∧ (p ∨ ¬r)

I Unit resolution using (r) and (¬r) deduces ⊥ ⇒ backtrack
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Example Cont.

F : (¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r)

I Now, try q = ⊥

F [q 7→ ⊥] : (¬p ∨ r)

I By PLP, set p to ⊥ and r to >

I F [q 7→ ⊥, p 7→ ⊥, r 7→ >] : >

I Thus, F is satisfiable and the assignment
[q 7→ ⊥, p 7→ ⊥, r 7→ >] is a model of F .
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Modern SAT Solvers

I Most solvers based on DPLL, but extend it in three important
ways:

1. Non-chronological backtracking

2. Learning from past “mistakes”

3. Heuristics for choosing variables and assignments

I Referred to as CDCL: conflict-driven clause learning
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Non-Chronological Backtracking

I Recall basic DPLL: First try assigning p to >; if doesn’t work,
backtrack to most recent decision level and try p = ⊥

I Called chronological backtracking but often sub-optimal

I Suppose made assignments p1, p2, . . . p100 but discovered p4
was a bad choice

I Backtracking to decision level associated with p100 is stupid...

I In non-chronological backtracking, can go back to earlier
decision levels
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Learning

I Learning = acquisition of new clauses to prevent similar bad
assignments

I For instance, suppose we discover p5 = >, p32 = ⊥, p100 = >
is inconsistent, i.e.,

φ⇒ ¬(p5 ∧ ¬p32 ∧ p100)

φ⇒ (¬p5 ∨ p32 ∨ ¬p100)

I Can add this clause without changing satisfiability

I Such clauses called conflict clauses ⇒ SAT solver has
database of conflict clauses
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Decision Heuristics

I Basic DPLL chooses variables in random order

I But making assignment to certain variables can make formula
much easier to solve!

I Modern solvers use more sophisticated heuristics

I This is something of a black art, but one of the most
important elements in SAT solving . . .
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Architecture of DPLL-Based SAT Solvers

Search Deduction

Decide

SAT

BCP
no conflict

conflict

Analyze
Conflict

UNSAT

backtrack
if d > 0
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The Plan

I We will talk about BCP and AnalyzeConflict first (related)

I Then: common decision heuristics used in the Decide step

I Finally: Implementation tricks to make all this fast
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BCP in SAT Solvers

I Recall: BCP is all possible applications of unit resolution

I SAT solvers remember deductions performed in the BCP
process ⇒ recorded as implication graph

I First some terminology . . .

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 46/76



Some Terminology and Conventions

I Decision variable: variable assigned in the Decide step

I The decision level of a decision variable is the level (order) in
which it was assigned

I The decision level of a variable assigned due to BCP is the
decision level of the last assigned decision variable

I Important note: Think of assignments as literals: Assignment
p = > is literal p; assignment p = ⊥ as literal ¬p

I Also: An assignment corresponds to a new unit clause added
to our set of clauses
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Decision Level Example

(¬x1 ∨ x2) ∧ (¬x3 ∨ ¬x4)

I Decide assigns x1 = > ⇒ x1 decision var at level 1

I BCP yields:

I Decision level of x2?

I Decide next assigns x4 = >. BCP deduces:

I x4 decision variable with decision level:

I x3’s decision level:
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Implication Graph

I An implication graph is a labeled directed acyclic graph

I Nodes: literals in the current partial assignment

I Node labels: Indicate assignment and decision level.

I Example: Node labeled ¬x : 3 (alternative notation ¬x@3)
means variable x was assigned to ⊥ at decision level 3

I Edges from l1, . . . lk to l labeled with c: Assignments
l1, . . . , lk caused assignment l due to clause c during BCP

I A special node C is called the conflict node.

I Edge to conflict node labeled with c: current partial
assignment contradicts clause c.
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Implication Graph Example
I Consider the following set of clauses:

c1 : (¬a ∨ c) c2 : (¬a ∨ ¬b) c3 : (¬c ∨ b)

I Assume Decide assigned a = > at decision level 2

I BCP yields:

I Assignment contradicts c3!

a:2

c:2

¬b:2

C

c1

c2

c3

c3

Root node
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Another Example

I Consider the following clauses:

c1 : (¬a ∨ c) c2 : (¬c ∨ ¬a ∨ b) c3 : (¬c ∨ d) c4 : (¬d ∨ ¬b)

I Suppose Decide assigned a = > at decision level 1

I Using clause c1, BCP yields:

I Using clause c2, BCP yields:

I Using clause c3, BCP yields:

I Assignment b = >, d = > contradicts:

I Resulting implication graph?
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Example cont.

I Consider the following clauses:

c1 : (¬a ∨ c) c2 : (¬c ∨ ¬a ∨ b) c3 : (¬c ∨ d) c4 : (¬d ∨ ¬b)

I Suppose Decide assigned a = > at decision level 1

I Resulting implication graph:

a:1

c:1

b:1 C

c1

c2

c3

c4

c2

d:1

c4
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Implication Graph Properties

I Root nodes in the implication graph correspond to what kind
of variables?

I Edges and internal nodes arise due to BCP

I If literal l has incoming edge labeled c, what do we know
about c?

I If literal l has outgoing edge labeled c, what do we know
about c?
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Example

Based on this implication graph and ignoring variables decided in
prior levels:

I What is c4?

I What is c3?

I What is c1?

I What is c2?
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Analyzing Conflicts

I We will use the implication graph to analyze conflicts

I AnalyzeConflict has two goals:

1. Learn new conflict clauses

2. Figure out what level to backtrack to
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Conflict Clauses

I A conflict clause is a clause implied by the original formula

I Goal of conflict clauses: Prevent bad partial assignments by
deriving contradiction as quickly as possible

I Question: To achieve this goal, are small or large conflict
clauses better?

I Answer: Small ones because the smaller the clause, the
quicker BCP forces variable assignments, and the quicker we
derive contradictions!

I The implication graph is very useful for deriving small clauses
implied by the original formula!

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 56/76



Conflicts and Learning

x2 : 2
x6 : 2

x1 : 6
x4 : 6

x3 : 6

¬x5 : 3 C

c2

c2

c3

c4

c4

c7

c3

The roots of the graph x6 : 2, x1 : 6 and ¬x5 : 3 constitute a
sufficient condition for creating the conflict.

DPLL generates a conflict clause c9 = (¬x1 ∨ x5 ∨ ¬x6) and
adds it to the clause database – the process is called learning

I c9 logically implied by original formula

I addition sound, prunes the search space
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Choosing Conflict Clauses

I One way to derive conflict clause: Conjoin all literals
associated with root nodes reaching conflict node, use
negation as conflict clause

I But there are other possibilities:
I Assignment {x2 7→ 1, x3 7→ 1} too leads to conflict

I Hence, (¬x2 ∨ ¬x3) possible candidate for learning too.
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Choosing Conflict Clauses

I Another possibility to derive conflict clauses: Compute
separating cut in the implication graph

I I.e. the set of edges whose removal breaks all paths from the
root nods to C .

I Two partitions:
I reason side – includes all the roots

I conflict side – conflict node C

I Set of nodes in the reason side adjacent to the removed edges
form a conflict clause
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Choosing Conflict Clauses

I Another possibility to derive conflict clauses: Compute
separating cut in the implication graph

I I.e. set of edges whose removal breaks all paths from the root
nodes to C .

I Set of nodes in the reason side adjacent to the removed edges
form a conflict clause: (¬x2 ∨ ¬x3)

x2 : 2
x6 : 2

x1 : 6
decision

x4 : 6

x3 : 6

¬x5 : 3 C

c1

c2

c2

c7

c4
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Backtracking

I Recall: AnalyzeConflict has two goals.

I First goal: Deriving conflict clauses X

I Second goal: Figure out what level to backtrack to

I Backtrack to level d means delete all variable assignments
made after level d (but assignments at level d not deleted)

I Next: Talk about how to infer a good level to backtrack to
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Backtracking and Asserting Clauses

I A good strategy: We want to backtrack to a level where BCP
forces at least one assignment

I Asserting clause is a clause with exactly one literal at the last
decision level, e.g., (¬x2 ∨ ¬x3) in the last implication graph

I Asserting clauses can be found using unique implication points
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Choosing Backtracking Level

I Question: Given an asserting clause, to what level should we
backtrack?

I Answer:

I Since asserting clause contains only one literal, say l ′, from
the highest decision level, backtracking to d will assert l ′!
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Recall: SAT Solver Architecture

Decide

SAT

BCP
no conflict

conflict

Analyze
Conflict

UNSAT

backtrack
if d > 0

I Decision heuristics for choosing variable order and truth
assignment
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Decision Heuristics

I Important part of SAT solvers, but something of a black art

I Can come up with hundreds of heuristics with varying
tradeoffs

I We’ll only talk about two:

1. Dynamic Largest Individual Sum (DLIS)

2. Variable State Independent Decaying Sum (VSIDS)
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Dynamic Largest Individual Sum (DLIS)

I This heuristic chooses the literal that satisfies the largest
number of currently unsatisfied clauses.

I A clause is unsatisfied if the clause does not evaluate to true
under the current partial assignment.

I Example: (x1 ∨ ¬x2) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)

I What assignment would DLIS pick for this formula?
(assuming no assignments so far)

I How is this heuristic dynamic?

I Thus, overhead can be high and must be implemented
carefully to minimize bookkeeping
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Variable State Independent Decaying Sum (VSIDS)

I Similar to DLIS, but tries to reduce overhead and favor literals
involved in conflicts (i.e. conflict-driven)

I Count number of clauses in which the literal appears, but
disregard if the clause it appears in is satisfied or not

I Specifically, initialize the score of each literal to the number of
clauses in which literal appears

I Every time we add a conflict clause involving literal l , increase
the score of that literal by 1

I Periodically divide scores of all literals by 2
⇒ decaying sum
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Variable State Independent Decaying Sum (VSIDS), cont.

I Favors literals involved in conflicts

I If a literal doesn’t appear in a recent conflict, its score will
decay over time

I Much cheaper compared to DLIS because we don’t need to
scan all clauses to figure out which ones are satisfied

I Introduced in the CHAFF SAT solver from Princeton, written
by undergrads!
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Implementation Tricks

I To build competitive SAT solvers, it is important to minimize
overhead of implementing Decide, BCP, and Analyze Conflict

I Very important because SAT solver might be searching
through hundreds of thousands of assignments!

I We’ll talk about two issues:

1. number of conflict clauses

2. trick to perform BCP fast: watch literals
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Conflict Clauses

I Recall: After analyzing conflict, we add new conflict clause to
our clause database

I Pro: Conflict clauses quickly block bad assignments and
prevent future mistakes

I Con: More clauses = more overhead

⇒ Tradeoff between conflict prevention and minimizing overhead
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Conflict Clauses, cont.

I For this reason, many SAT solvers do not keep all the conflict
clauses they derive

I For example, they put a limit on the number of conflict
clauses they derive

I Typically, keep most recent conflict clauses since they are
most relevant to current part of search space

I Can guarantee termination of algorithm even if we do not
keep all conflict clauses!
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Implementing BCP

I Implementing BCP efficiently is very important because SAT
solvers spend a lot of time doing BCP

I Naive implementation of BCP: Requires scanning all currently
unsatisfied clauses

I But industrial SAT contain hundreds of thousands of clauses,
so scanning all unsatisfied clauses too expensive!

I A more intelligent implementation: Keep mapping from each
literal to all clauses in which each literal appears

I But this is still very expensive because typically each literals
appears in many clauses
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The Trick: Watch Literals

I Modern SAT solvers use a more clever trick to perform BCP
fast: watch literals

I Observe: Ultimate purpose of BCP is to figure out which
variable assignments imply which others

I Question: If we are performing unit resolution between l and
clause c = (¬l ∨ l1, . . . ∨ lk ), under what condition will a new
assignment be implied?

I Answer:

I Idea: Since a clause will not imply new variable assignment
unless it has only two literals left, we only need to look at
clauses that have at most two unassigned literals!
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Watch Literals

I To efficiently detect clauses with at most two unassigned
literals, select two unassigned literals in each unsatisfied clause
as watch literals

I Invariant: Watch literals are always unassigned!

I To maintain invariant: If a watch literal is assigned a truth
value and clause has other unassigned literals, choose any
unassigned literal in clause to be new watch literal

I If a watch literal is assigned a truth value and there are no
other unassigned non-watch literals left, BCP implies an
assignment to the only remaining watch literal!
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Watch Literals, cont.

I Question: Given this invariant, if we make assignment l ,
which clauses can imply new variable assignments?

I Answer:

I If ¬l does not appear, we can’t perform unit resolution

I If ¬l appears but is not a watch literal, then clause has more
than two unassigned literals ⇒ won’t imply new assignment!

I Watch literal trick makes BCP much faster because much
fewer clauses contain negation of current literal as a watch
literal!

I Yields huge improvement in SAT solver performance!
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Practical SAT Solving Summary

I Most competitive solvers today are based on DPLL

I But they extend DPLL in three ways: non-chronological
backtracking, conflict clause learning, decision heuristics,
engineering tricks (watch literals)

I Referred to as CDCL: conflict-driven clause learning

I Most competitive SAT solvers based on CDCL

I But there are also other kinds of SAT solvers not based on
CDCL, for instance, perform stochastic search (e.g.,
WalkSAT)

I Stochastic SAT solvers perform well on randomly-generated
SAT instances, but not so well on industrial ones
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