
C440: Software Reliability

SAT Solving: Basics and DPLL

Cristian Cadar

Based on slides by Işıl Dillig and Hristina Palikareva

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 1/76

SAT Problem

input a Boolean formula ϕ (usually in CNF)

decide whether or not there exists an assignment of ϕ’s variables
under which ϕ evaluates to true

I SAT Solver is an algorithm (and tool) for solving the SAT
problem.

I SAT is NP-complete [Cook’70]
I SAT algorithms worst-case exponential in time

I Modern SAT solvers employ various heuristics
I Perform exceptionally well in practice

I Have had deep impact on fields such as testing and verification

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 2/76

DPLL

I Most modern SAT solvers based on the DPLL framework

I Due to Davis, Putnam, Loveland, Logemann, 1962

I DPLL operates on formulas in normal form, which we will
review shortly

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 3/76

Boolean Formulas and CNF

Boolean Formulas

I Defined inductively by the following grammar:

ϕ ::= true | false | x | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ϕ1 ↔ ϕ2

I x is a variable

I Formulas of the form x and ¬x are literals

I Example p ↔ (q → ¬r)
I Variables appearing in the formula?

I Literals appearing in the formula?

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 4/76

Normal Forms

I A normal form of a formula F is another formula F ′ such that
F is equivalent to F ′, but F ′ obeys certain syntactic
restrictions.

I There are three kinds of normal forms that are interesting in
propositional logic:

I Negation Normal Form (NNF)

I Disjunctive Normal Form (DNF)

I Conjunctive Normal Form (CNF)

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 5/76

Negation Normal Form (NNF)

Negation Normal Form requires two syntactic restrictions:

I The only logical connectives are ¬,∧,∨ (i.e., no →, ↔)

I Negations are only applied to literals

I Is formula p ∨ (¬q ∧ (r ∨ ¬s)) in NNF?

I What about p ∨ (¬q ∧ ¬(¬r ∧ s))?

I What about p ∨ (¬q ∧ (¬¬r ∨ ¬s))?

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 6/76

Conversion to NNF I

I To make sure the only logical connectives are ¬,∧,∨, need to
eliminate → and ↔

I How do we express F1 → F2 using ∨,∧,¬?

I How do we express F1 ↔ F2 using only ¬,∧ . ∨?

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 7/76

Conversion to NNF II

I Also need to ensure negations appear only in literals: push
negations in

I Use DeMorgan’s laws to distribute ¬ over ∧ and ∨:

¬(F1 ∧ F2)⇔ ¬F1 ∨ ¬F2

¬(F1 ∨ F2)⇔ ¬F1 ∧ ¬F2

I We also disallow double negations:

¬¬F ⇔ F

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 8/76

NNF Example

Convert F : ¬(p → (p ∧ q)) to NNF

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 9/76

Disjunctive Normal Form (DNF)

I A formula in disjunctive normal form is a disjunction of
conjunction of literals.∨

i

∧
j

`i ,j for literals `i ,j

I i.e., ∨ can never appear inside ∧ or ¬

I Called disjunctive normal form because disjuncts are at the
outer level

I Each inner conjunction is called a clause

I Question: If a formula is in DNF, is it also in NNF?

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 10/76

Conversion to DNF

I To convert formula to DNF, first convert it to NNF.

I Then, distribute ∧ over ∨:

(F1 ∨ F2) ∧ F3 ⇔ (F1 ∧ F3) ∨ (F2 ∧ F3)

F1 ∧ (F2 ∨ F3) ⇔ (F1 ∧ F2) ∨ (F1 ∧ F3)

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 11/76

Example

Convert F : (q1 ∨ ¬¬q2) ∧ (¬r1 → r2) into DNF

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 12/76

DNF and Satisfiability

I Claim: If formula is in DNF, trivial to determine satisfiability.
How?

I

I

I Idea: To determine satisfiability, convert formula to DNF and
just do a syntactic check.

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 13/76

DNF and Blow-up in formula size

I This idea is completely impractical. Why?

I Consider formula: (F1 ∨ F2) ∧ (F3 ∨ F4)

I In DNF:

(F1 ∧ F3) ∨ (F1 ∧ F4) ∨ (F2 ∧ F3) ∨ (F2 ∧ F4)

I Every time we distribute, formula size doubles!

I Moral: DNF conversion causes exponential blow-up in size!

I Checking satisfiability by converting to DNF is almost as bad
as truth tables!

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 14/76

Conjunctive Normal Form (CNF)

I A formula in conjuctive normal form is a conjunction of
disjunction of literals.∧

i

∨
j

`i ,j for literals `i ,j

I i.e., ∧ not allowed inside ∨,¬.

I Called conjunctive normal form because conjucts are at the
outer level

I Each inner disjunction is called a clause

I Is formula in CNF also in NNF?

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 15/76

Conversion to CNF

I To convert formula to CNF, first convert it to NNF.

I Then, distribute ∨ over ∧:

(F1 ∧ F2) ∨ F3 ⇔ (F1 ∨ F3) ∧ (F2 ∨ F3)

F1 ∨ (F2 ∧ F3) ⇔ (F1 ∨ F2) ∧ (F1 ∨ F3)

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 16/76

CNF Conversion Example

Convert F : (p ↔ (q → r)) into CNF

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 17/76

DNF vs. CNF

I Fact: Unlike DNF, it is not trivial to determine satisfiability of
formula in CNF.

I Does CNF conversion cause exponential blow-up in size?

I News: But almost all SAT solvers first convert formula to
CNF before solving!

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 18/76

Why CNF?

I Question: If it is just as expensive to convert formula to CNF
as to DNF, why do solvers convert to CNF although it is
much easier to determine satisfiability in DNF?

I

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 19/76

Equisatisfiability

I Two formulas F and F ′ are equisatisfiable iff:

F is satisfiable if and only if F ′ is satisfiable

II If two formulas are equisatisfiable, are they equivalent?

I Example:

I

I Equisatisfiability is a much weaker notion than equivalence.

I But useful if all we want to do is determine satisfiability.

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 20/76

The Plan

I To determine satisfiability of F , convert formula to
equisatisfiable formula F ′ in CNF

I Use an algorithm (DPLL) to decide satisfiability of F ′

I Since F ′ is equisatisfiable to F , F is satifiable iff algorithm
decides F ′ is satisfiable

I Big question: How do we convert formula to equisatisfiable
formula without causing exponential blow-up in size?

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 21/76

Tseitin’s Transformation

Tseitin’s transformation converts formula F
to equisatisfiable formula F ′ in CNF
with only a linear increase in size.

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 22/76

Tseitin’s Transformation I

I Step 1: Introduce a new variable pG for every subformula G
of F (unless G is already a single variable).

I For instance, if F = G1 ∧ G2, introduce two variables pG1

and pG2 representing G1 and G2 respectively.

I pG1 is said to be representative of G1 and pG2 is
representative of G2.

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 23/76

Tseitin’s Transformation II

I Step 2: Consider each subformula

G : G1 ◦G2 (◦ arbitrary boolean connective)

I Stipulate representative of G is equivalent to representative of
G1 ◦G2

pG ↔ pG1 ◦ pG2

I Step 3: Convert pG ↔ pG1 ◦ pG2 to equivalent CNF (by
converting to NNF and distributing ∨’s over ∧’s).

I Observe: Since pG ↔ pG1 ◦ pG2 contains at most three
propositional variables and exactly two connectives, size of
this formula in CNF is bound by a constant.

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 24/76

Tseitin’s Transformation II

I Given original formula F , let pF be its representative and let
SF be the set of all subformulas of F (including F itself).

I Then, introduce the formula

pF ∧
∧

G=(G1◦G2)∈SF

CNF (pg ↔ pg1 ◦ pg2)

I Claim: This formula is equisatisfiable to F .

I The proof is by structural induction

I Formula is also in CNF because conjunction of CNF formulas
is in CNF.

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 25/76

Tseitin’s Transformation and Size

I Using this transformation, we converted F to an
equisatisfiable CNF formula F ′.

I What about the size of F ′?

pF ∧
∧

G=(G1◦G2)∈SF

CNF (pg ↔ pg1 ◦ pg2)

I |SF | is bound by the number of connectives in F .

I Each formula CNF (pg ↔ pg1 ◦ pg2) has constant size.

I Thus, trasformation causes only linear increase in formula size.

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 26/76

Tseitin’s Transformation Example

Convert F : (p ∨ q)→ (p ∧ ¬r) to equisatisfiable CNF formula.

1.

2.

3.

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 27/76

SAT Solvers

I A model is a (total or partial) assignment of variables to > or
⊥ that makes the formula >

I How do you map the assignment to F’ to an assignment to F?
I Simply drop assignments to new representative variables

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 28/76

DPLL: Historical Perspective

I Almost all SAT solvers today are based on an algorithm called
DPLL (Davis-Putnam-Logemann-Loveland)

I 1962: the original algorithm known as DP (Davis-Putnam)
⇒“simple” procedure for automated theorem proving

I Davis and Putnam hired two
programmers, George Logemann
and David Loveland, to implement
their ideas on the IBM 704.

I Not all of their ideas worked out as
planned ⇒ refined algorithm to
what is known today as DPLL

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 29/76

DPLL insight

I There are two distinct ways to approach the boolean
satisfiability problem:

I Search
I Find satisfying assignment by searching through all possible

assignments ⇒ most basic incarnation: truth table!

I Deduction
I Deduce new facts from set of known facts ⇒ application of

proof rules, semantic argument method

I DPLL combines search and deduction in a very effective way!

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 30/76

Deduction in DPLL

I Deductive principle underlying DPLL is propositional
resolution

I Resolution can only be applied to formulas in CNF

I SAT solvers convert formulas to CNF to be able to perform
resolution

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 31/76

Propositional Resolution

I Consider two clauses in CNF:

C1 : (l1 ∨ . . . p . . . ∨ lk) C2 : (l ′1 ∨ . . .¬p . . . ∨ l ′n)

I From these, we can deduce a new clause C3, called resolvent:

C3 : (l1 ∨ . . . ∨ lk ∨ l ′1 ∨ ∨ l ′n)

I Correctness:

I Suppose p is assigned >: Since C2 must be satisfied and since
¬p is ⊥, (l ′1 ∨ ∨ l ′n) must be true.

I Suppose p is assigned ⊥: Since C1 must be satisfied and since
p is ⊥, (l1 ∨ ∨ lk) must be true.

I Thus, C3 must be true.

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 32/76

Unit Resolution

I DPLL uses a restricted form of resolution, known as unit
resolution.

I Unit resolution is propositional resolution, but one of the
clauses must be a unit clause (i.e., contains only one literal)

I C1 : p C2 : (l1 ∨ . . .¬p . . . ∨ ln)

I Resolvent: (l1 ∨ . . . ∨ ln)

I Performing unit resolution on C1 and C2 is same as replacing
p with true in the original clauses.

I In DPLL, all possible applications of unit resolution called
Boolean Constraint Propagation (BCP).

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 33/76

Boolean Constraint Propagation (BCP) Example

I Apply BCP to CNF formula:

(p) ∧ (¬p ∨ q) ∧ (r ∨ ¬q ∨ s)

I Resolvent of first and second clause:

I New formula:

I Apply unit resolution again:

I No more unit resolution possible, so this is the result of BCP.

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 34/76

Basic DPLL

bool DPLL(φ)
{
1. φ′ = BCP(φ)
2. if(φ′ = >) then return SAT;
3. else if(φ′ = ⊥) then return UNSAT;
4. p = choose var(φ′);
5. if(DPLL(φ′[p 7→ >])) then return SAT;
6. else return (DPLL(φ′[p 7→ ⊥]));
}

I Recursive procedure; input is formula in CNF

I Formula is > if no more clauses left

I Formula becomes ⊥ if we derive ⊥ due to unit resolution

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 35/76

An Optimization: Pure Literal Propagation

I If variable p occurs only positively in the formula (i.e., no
¬p), p must be set to >

I Similarly, if p occurs only negatively (i.e., only appears as
¬p), p must be set to ⊥

I This is known as Pure Literal Propagation (PLP).

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 36/76

DPLL with Pure Literal Propagation

bool DPLL(φ)
{
1. φ′ = BCP(φ)
2. φ′′ = PLP(φ′)
3. if(φ′′ = >) then return SAT;
4. else if(φ′′ = ⊥) then return UNSAT;
5. p = choose var(φ′′);
6. if(DPLL(φ′′[p 7→ >])) then return SAT;
7. else return (DPLL(φ′′[p 7→ ⊥]));
}

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 37/76

Example

F : (¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r)

I No BCP possible because no unit clause

I No PLP possible because there are no pure literals

I Choose variable q to branch on:

F [q 7→ >] : (r) ∧ (¬r) ∧ (p ∨ ¬r)

I Unit resolution using (r) and (¬r) deduces ⊥ ⇒ backtrack

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 38/76

Example Cont.

F : (¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r)

I Now, try q = ⊥

F [q 7→ ⊥] : (¬p ∨ r)

I By PLP, set p to ⊥ and r to >

I F [q 7→ ⊥, p 7→ ⊥, r 7→ >] : >

I Thus, F is satisfiable and the assignment
[q 7→ ⊥, p 7→ ⊥, r 7→ >] is a model of F .

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 39/76

Modern SAT Solvers

I Most solvers based on DPLL, but extend it in three important
ways:

1. Non-chronological backtracking

2. Learning from past “mistakes”

3. Heuristics for choosing variables and assignments

I Referred to as CDCL: conflict-driven clause learning

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 40/76

Non-Chronological Backtracking

I Recall basic DPLL: First try assigning p to >; if doesn’t work,
backtrack to most recent decision level and try p = ⊥

I Called chronological backtracking but often sub-optimal

I Suppose made assignments p1, p2, . . . p100 but discovered p4
was a bad choice

I Backtracking to decision level associated with p100 is stupid...

I In non-chronological backtracking, can go back to earlier
decision levels

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 41/76

Learning

I Learning = acquisition of new clauses to prevent similar bad
assignments

I For instance, suppose we discover p5 = >, p32 = ⊥, p100 = >
is inconsistent, i.e.,

φ⇒ ¬(p5 ∧ ¬p32 ∧ p100)

φ⇒ (¬p5 ∨ p32 ∨ ¬p100)

I Can add this clause without changing satisfiability

I Such clauses called conflict clauses ⇒ SAT solver has
database of conflict clauses

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 42/76

Decision Heuristics

I Basic DPLL chooses variables in random order

I But making assignment to certain variables can make formula
much easier to solve!

I Modern solvers use more sophisticated heuristics

I This is something of a black art, but one of the most
important elements in SAT solving . . .

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 43/76

Architecture of DPLL-Based SAT Solvers

Search Deduction

Decide

SAT

BCP
no conflict

conflict

Analyze
Conflict

UNSAT

backtrack
if d > 0

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 44/76

The Plan

I We will talk about BCP and AnalyzeConflict first (related)

I Then: common decision heuristics used in the Decide step

I Finally: Implementation tricks to make all this fast

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 45/76

BCP in SAT Solvers

I Recall: BCP is all possible applications of unit resolution

I SAT solvers remember deductions performed in the BCP
process ⇒ recorded as implication graph

I First some terminology . . .

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 46/76

Some Terminology and Conventions

I Decision variable: variable assigned in the Decide step

I The decision level of a decision variable is the level (order) in
which it was assigned

I The decision level of a variable assigned due to BCP is the
decision level of the last assigned decision variable

I Important note: Think of assignments as literals: Assignment
p = > is literal p; assignment p = ⊥ as literal ¬p

I Also: An assignment corresponds to a new unit clause added
to our set of clauses

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 47/76

Decision Level Example

(¬x1 ∨ x2) ∧ (¬x3 ∨ ¬x4)

I Decide assigns x1 = > ⇒ x1 decision var at level 1

I BCP yields:

I Decision level of x2?

I Decide next assigns x4 = >. BCP deduces:

I x4 decision variable with decision level:

I x3’s decision level:

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 48/76

Implication Graph

I An implication graph is a labeled directed acyclic graph

I Nodes: literals in the current partial assignment

I Node labels: Indicate assignment and decision level.

I Example: Node labeled ¬x : 3 (alternative notation ¬x@3)
means variable x was assigned to ⊥ at decision level 3

I Edges from l1, . . . lk to l labeled with c: Assignments
l1, . . . , lk caused assignment l due to clause c during BCP

I A special node C is called the conflict node.

I Edge to conflict node labeled with c: current partial
assignment contradicts clause c.

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 49/76

Implication Graph Example
I Consider the following set of clauses:

c1 : (¬a ∨ c) c2 : (¬a ∨ ¬b) c3 : (¬c ∨ b)

I Assume Decide assigned a = > at decision level 2

I BCP yields:

I Assignment contradicts c3!

a:2

c:2

¬b:2

C

c1

c2

c3

c3

Root node

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 50/76

Another Example

I Consider the following clauses:

c1 : (¬a ∨ c) c2 : (¬c ∨ ¬a ∨ b) c3 : (¬c ∨ d) c4 : (¬d ∨ ¬b)

I Suppose Decide assigned a = > at decision level 1

I Using clause c1, BCP yields:

I Using clause c2, BCP yields:

I Using clause c3, BCP yields:

I Assignment b = >, d = > contradicts:

I Resulting implication graph?

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 51/76

Example cont.

I Consider the following clauses:

c1 : (¬a ∨ c) c2 : (¬c ∨ ¬a ∨ b) c3 : (¬c ∨ d) c4 : (¬d ∨ ¬b)

I Suppose Decide assigned a = > at decision level 1

I Resulting implication graph:

a:1

c:1

b:1 C

c1

c2

c3

c4

c2

d:1

c4

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 52/76

Implication Graph Properties

I Root nodes in the implication graph correspond to what kind
of variables?

I Edges and internal nodes arise due to BCP

I If literal l has incoming edge labeled c, what do we know
about c?

I If literal l has outgoing edge labeled c, what do we know
about c?

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 53/76

Example

Based on this implication graph and ignoring variables decided in
prior levels:

I What is c4?

I What is c3?

I What is c1?

I What is c2?

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 54/76

Analyzing Conflicts

I We will use the implication graph to analyze conflicts

I AnalyzeConflict has two goals:

1. Learn new conflict clauses

2. Figure out what level to backtrack to

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 55/76

Conflict Clauses

I A conflict clause is a clause implied by the original formula

I Goal of conflict clauses: Prevent bad partial assignments by
deriving contradiction as quickly as possible

I Question: To achieve this goal, are small or large conflict
clauses better?

I Answer: Small ones because the smaller the clause, the
quicker BCP forces variable assignments, and the quicker we
derive contradictions!

I The implication graph is very useful for deriving small clauses
implied by the original formula!

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 56/76

Conflicts and Learning

x2 : 2
x6 : 2

x1 : 6
x4 : 6

x3 : 6

¬x5 : 3 C

c2

c2

c3

c4

c4

c7

c3

The roots of the graph x6 : 2, x1 : 6 and ¬x5 : 3 constitute a
sufficient condition for creating the conflict.

DPLL generates a conflict clause c9 = (¬x1 ∨ x5 ∨ ¬x6) and
adds it to the clause database – the process is called learning

I c9 logically implied by original formula

I addition sound, prunes the search space

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 57/76

Choosing Conflict Clauses

I One way to derive conflict clause: Conjoin all literals
associated with root nodes reaching conflict node, use
negation as conflict clause

I But there are other possibilities:
I Assignment {x2 7→ 1, x3 7→ 1} too leads to conflict

I Hence, (¬x2 ∨ ¬x3) possible candidate for learning too.

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 58/76

Choosing Conflict Clauses

I Another possibility to derive conflict clauses: Compute
separating cut in the implication graph

I I.e. the set of edges whose removal breaks all paths from the
root nods to C .

I Two partitions:
I reason side – includes all the roots

I conflict side – conflict node C

I Set of nodes in the reason side adjacent to the removed edges
form a conflict clause

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 59/76

Choosing Conflict Clauses

I Another possibility to derive conflict clauses: Compute
separating cut in the implication graph

I I.e. set of edges whose removal breaks all paths from the root
nodes to C .

I Set of nodes in the reason side adjacent to the removed edges
form a conflict clause: (¬x2 ∨ ¬x3)

x2 : 2
x6 : 2

x1 : 6
decision

x4 : 6

x3 : 6

¬x5 : 3 C

c1

c2

c2

c7

c4

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 60/76

Backtracking

I Recall: AnalyzeConflict has two goals.

I First goal: Deriving conflict clauses X

I Second goal: Figure out what level to backtrack to

I Backtrack to level d means delete all variable assignments
made after level d (but assignments at level d not deleted)

I Next: Talk about how to infer a good level to backtrack to

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 61/76

Backtracking and Asserting Clauses

I A good strategy: We want to backtrack to a level where BCP
forces at least one assignment

I Asserting clause is a clause with exactly one literal at the last
decision level, e.g., (¬x2 ∨ ¬x3) in the last implication graph

I Asserting clauses can be found using unique implication points

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 62/76

Choosing Backtracking Level

I Question: Given an asserting clause, to what level should we
backtrack?

I Answer:

I Since asserting clause contains only one literal, say l ′, from
the highest decision level, backtracking to d will assert l ′!

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 63/76

Recall: SAT Solver Architecture

Decide

SAT

BCP
no conflict

conflict

Analyze
Conflict

UNSAT

backtrack
if d > 0

I Decision heuristics for choosing variable order and truth
assignment

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 64/76

Decision Heuristics

I Important part of SAT solvers, but something of a black art

I Can come up with hundreds of heuristics with varying
tradeoffs

I We’ll only talk about two:

1. Dynamic Largest Individual Sum (DLIS)

2. Variable State Independent Decaying Sum (VSIDS)

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 65/76

Dynamic Largest Individual Sum (DLIS)

I This heuristic chooses the literal that satisfies the largest
number of currently unsatisfied clauses.

I A clause is unsatisfied if the clause does not evaluate to true
under the current partial assignment.

I Example: (x1 ∨ ¬x2) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)

I What assignment would DLIS pick for this formula?
(assuming no assignments so far)

I How is this heuristic dynamic?

I Thus, overhead can be high and must be implemented
carefully to minimize bookkeeping

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 66/76

Variable State Independent Decaying Sum (VSIDS)

I Similar to DLIS, but tries to reduce overhead and favor literals
involved in conflicts (i.e. conflict-driven)

I Count number of clauses in which the literal appears, but
disregard if the clause it appears in is satisfied or not

I Specifically, initialize the score of each literal to the number of
clauses in which literal appears

I Every time we add a conflict clause involving literal l , increase
the score of that literal by 1

I Periodically divide scores of all literals by 2
⇒ decaying sum

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 67/76

Variable State Independent Decaying Sum (VSIDS), cont.

I Favors literals involved in conflicts

I If a literal doesn’t appear in a recent conflict, its score will
decay over time

I Much cheaper compared to DLIS because we don’t need to
scan all clauses to figure out which ones are satisfied

I Introduced in the CHAFF SAT solver from Princeton, written
by undergrads!

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 68/76

Implementation Tricks

I To build competitive SAT solvers, it is important to minimize
overhead of implementing Decide, BCP, and Analyze Conflict

I Very important because SAT solver might be searching
through hundreds of thousands of assignments!

I We’ll talk about two issues:

1. number of conflict clauses

2. trick to perform BCP fast: watch literals

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 69/76

Conflict Clauses

I Recall: After analyzing conflict, we add new conflict clause to
our clause database

I Pro: Conflict clauses quickly block bad assignments and
prevent future mistakes

I Con: More clauses = more overhead

⇒ Tradeoff between conflict prevention and minimizing overhead

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 70/76

Conflict Clauses, cont.

I For this reason, many SAT solvers do not keep all the conflict
clauses they derive

I For example, they put a limit on the number of conflict
clauses they derive

I Typically, keep most recent conflict clauses since they are
most relevant to current part of search space

I Can guarantee termination of algorithm even if we do not
keep all conflict clauses!

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 71/76

Implementing BCP

I Implementing BCP efficiently is very important because SAT
solvers spend a lot of time doing BCP

I Naive implementation of BCP: Requires scanning all currently
unsatisfied clauses

I But industrial SAT contain hundreds of thousands of clauses,
so scanning all unsatisfied clauses too expensive!

I A more intelligent implementation: Keep mapping from each
literal to all clauses in which each literal appears

I But this is still very expensive because typically each literals
appears in many clauses

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 72/76

The Trick: Watch Literals

I Modern SAT solvers use a more clever trick to perform BCP
fast: watch literals

I Observe: Ultimate purpose of BCP is to figure out which
variable assignments imply which others

I Question: If we are performing unit resolution between l and
clause c = (¬l ∨ l1, . . . ∨ lk), under what condition will a new
assignment be implied?

I Answer:

I Idea: Since a clause will not imply new variable assignment
unless it has only two literals left, we only need to look at
clauses that have at most two unassigned literals!

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 73/76

Watch Literals

I To efficiently detect clauses with at most two unassigned
literals, select two unassigned literals in each unsatisfied clause
as watch literals

I Invariant: Watch literals are always unassigned!

I To maintain invariant: If a watch literal is assigned a truth
value and clause has other unassigned literals, choose any
unassigned literal in clause to be new watch literal

I If a watch literal is assigned a truth value and there are no
other unassigned non-watch literals left, BCP implies an
assignment to the only remaining watch literal!

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 74/76

Watch Literals, cont.

I Question: Given this invariant, if we make assignment l ,
which clauses can imply new variable assignments?

I Answer:

I If ¬l does not appear, we can’t perform unit resolution

I If ¬l appears but is not a watch literal, then clause has more
than two unassigned literals ⇒ won’t imply new assignment!

I Watch literal trick makes BCP much faster because much
fewer clauses contain negation of current literal as a watch
literal!

I Yields huge improvement in SAT solver performance!

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 75/76

Practical SAT Solving Summary

I Most competitive solvers today are based on DPLL

I But they extend DPLL in three ways: non-chronological
backtracking, conflict clause learning, decision heuristics,
engineering tricks (watch literals)

I Referred to as CDCL: conflict-driven clause learning

I Most competitive SAT solvers based on CDCL

I But there are also other kinds of SAT solvers not based on
CDCL, for instance, perform stochastic search (e.g.,
WalkSAT)

I Stochastic SAT solvers perform well on randomly-generated
SAT instances, but not so well on industrial ones

Cristian Cadar, C440: Software Reliability SAT Solving: Basics and DPLL 76/76

