
Dynamic Symbolic Execution

Cristian Cadar

Department of Computing
Imperial College London

440:Software Reliability
Autumn 2016

Note: temporary slides, final slides will be made
available shortly after the lecture.

2

Motivation

• Testing is hard
– Manual testing is very expensive
– Random (“fuzz”) testing is often ineffective

• Hard to hit narrow input ranges
• Hard to generate structured input

int bad_abs(int x) {
if(x < 0)
return –x;
if(x == 12345678)

return –x;
return x;

}

EXE
Random

Number of test cases

Sym Ex vs. Random Testing
(EXE on Berkeley Packet Filter)

[EXE: Automatically generating inputs of death
C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, D. Engler, CCS 2006]

Sym Ex vs. Manual Testing
(KLEE on Coreutils)

9

-20%

0%

20%

40%

60%

80%

100%

KL
EE

 c
ov

er
ag

e
–

M
an

ua
l c

ov
er

ag
e Avg/utility

KLEE 91%
Manual 68%

Apps sorted by KLEE coverage – Manual coverage

[KLEE: Unassisted and Automatic Generation of High-Coverage Tests for Complex Systems Programs
C. Cadar, D. Dunbar, D. Engler, OSDI 2006]

• Dynamic analysis requires test cases
– It cannot reason about all possible values on a path

• Static analysis is imprecise
– hard to find bugs dependent on specific values and/or

memory layout; functional bugs (e.g. crosschecking)
– false positives
– does not generate test cases
+ but it usually finds more bugs
+ easier to apply (don’t need full program)

• Both are complementary
– No reason not to run static; can use static info to improve

symbolic execution
– Can run tests cases generated by DSE on dynamic tools

Sym ex vs dyn/static analysis

Dynamic Symbolic Execution
(or Symbolic Execution or DSE)

• Automatic
– does not require test cases

• Highly systematic
– reaches deep code paths
– achieves high statement/branch coverage
– can reason about all possible values on a path

• Finds deep bugs
– including those depending on specific values and/or

memory layout
– including functional bugs (see crosschecking study)

• Generates concrete test cases for explored paths
– error reports for paths hitting a bug

7

PCRE – expressions of death

[^[\0^\0]*-?]{\0 [\-\`[\0^\0]\`]{\0
[*-\`[\0^\0]\`-?]{\0 [*-\`[\0^\0]\`-?]\0
[*-\`[\0^\0]\`-?]\0 [\-\`[\0^\0]\`-]\0
(?#)\?[[[\0\0]\-]{\0 (?#)\?[[[\0\0]\-]\0
(?#)\?[[[\0\0]\[]\0 (?#)\?[:[[\0\0]\-]\0
(?#)\?[[[\0\0]\-]\0 (?#)\?[[[\0\0]\]\0
(?#)\?[[[\0\0][\0^\0]]\0 (?#)\?[[[\0\0][\0^\0]-]\0
(?#)\?[[[\0\0][\0^\0]\]\0 (?#)\?[=[[\0\0][\0^\0]\?]\0

8

Disk of death (JFS, Linux 2.6.10)

[Automatically generating malicious disks using symbolic execution
J. Yang, C. Sar, P. Twohey, C. Cadar, D. Engler , IEEE Security 2006]

CS.
29
5:

9

Basic idea

§ Run program on symbolic input, whose initial
value is anything

§ Program instructions become operations on
symbolic expressions

§ At conditionals that use symbolic inputs, fork
execution and follow both paths:
§ On true branch, add constraint that condition is true
§ On false, that it is not

§ When a path terminates, generate a test case by
solving the constraints on that path

Dynamic SymEx in Practice

• Significant interest in the last few years
• Several dynamic symbolic execution/concolic

tools available as open-source:
– KLEE, CREST, SYMBOLIC JPF, etc.

• Started to be explored/adopted by industry:
– Microsoft, Fujitsu, Hitachi, Intel, NASA, etc.

magic ≠
0xEEEE

magic =
0xEEEE

img = *

Toy Example

TRUE

int main(int argc, char** argv) {
...
image_t img = read_img(file);
if (img.magic != 0xEEEE)

return -1;
if (img.h > 1024)

return -1;
w = img.sz / img.h;
...

}

magic ≠
0xEEEE

return -1

h > 1024 TRUE

h > 1024
return -1

h ≤ 1024

w = sz / h

struct image_t {
unsigned short magic;
unsigned short h, sz;
...

magic ≠
0xEEEE

magic =
0xEEEE

img = *

AAAA0000…
img1.out

TRUE
return -1

h > 1024 TRUE

h > 1024
return -1

h ≤ 1024

EEEE1111…
img2.out

h = 0
TRUE
h = 0

Div by
zero!

h ≠ 0

EEEE0A00… img4.out

EEEE0000…
img3.out

w = sz / h

magic ≠
0xEEEE

int main(int argc, char** argv) {
...
image_t img = read_img(file);
if (img.magic != 0xEEEE)

return -1;
if (img.h > 1024)

return -1;
w = img.sz / img.h;
...

}

struct image_t {
unsigned short magic;
unsigned short h, sz;
...

Toy Example

Some Concepts and Terminology

14

x = 1234

x < 0
x < 0 x ³ 0

return x

x ¹ 1234

return -x

return -x

x = 1234

x = *

TRUE

TRUE FALSE

FALSE

• Execution paths of a program can
be seen as a binary execution tree
– Internal nodes are decision points in

the program
– Leaves are program exit points

• Execution trees of real programs
are essentially infinite
– Symbolic execution incrementally

explores parts of the execution tree
– The leaves of the “current” execution

tree form the set of active states

Some Concepts and Terminology

15

x = 1234

x < 0
x < 0 x ³ 0

return x

x ¹ 1234

return -x

return -x

x = 1234

x = *

TRUE

TRUE FALSE

FALSE

• Each path from the root to a leaf
represents the execution of an
equivalent set of inputs

• The conjunction of constraints
gathered on an execution path is
called the path condition or path
constraints (PC)

Feasible vs Infeasible Paths

16

x > 2

x > 5
x > 5 x £ 5

x £ 2x > 2

x = *

TRUE

TRUE FALSE

FALSE

How many paths?
int foo(int x) {

if (x > 5)
printf(“>5”);

if (x > 2)
printf(“>2”);

}

x > 2

x £ 2x > 2

TRUE FALSE

x = 6 x = 4 x = 1. . .
Infeasible

No need
to add
implied
constraints

Symbolic execution
explores only feasible paths!

Implicit checks for general
properties:

• Pointer dereferences
• Array indexing
• Division/modulo operations
• Assert statements

All-Value Checks

0 ≤ k< 4TRUE FALSEint foo(unsigned k) {
int a[4] = {3, 1, 0, 4};
k = k % 4;
return a[a[k]];

}

. . .

{ k = * }

. . .

TRUE FALSE

Infeasible

. . .

0 ≤ k < 4 ¬ 0 ≤ k < 4

1
7

All-value checks!
• Errors are found if any buggy

values exist on that path!
• Discussion: compare with

regular testing, then Valgrind

Implicit checks for general
properties:

• Pointer dereferences
• Array indexing
• Division/modulo operations
• Assert statements

All-Value Checks

0 ≤ a[k]< 4TRUE FALSEint foo(unsigned k) {
int a[4] = {3, 1, 0, 4};
k = k % 4;
return a[a[k]];

}

. . .

Buffer overflow!

{ k = * }

. . .

All-value checks!
• Errors are found if any buggy

values exist on that path!
• Discussion: compare with

regular testing, then Valgrind

FALSETRUE

¬ 0 ≤ a[k] < 40 ≤ a[k] < 4

. . . k = 3

Mixed Concrete/Symbolic Execution

1
9

• All operations that do not depend on the symbolic inputs
are (essentially) executed as in the original code!

• Ability to interact with the outside environment
– System calls, uninstrumented libraries

• Only relevant code executed symbolically
– Without the need to extract it explicitly
– For many real programs (and test drivers) most operations are

concrete
– The statements executed symbolically form the symbolic slice

[Discussion: scalability of symbolic execution?]

EXE and KLEE

EXE/
K L E E

Constraint Solver (STP)

x = 3

x = -2

x = 1234

x = 3

C code

x ³ 0
x ¹ 1234

2
1

Implementing Dynamic Analyses

22

• Dynamic analysis: run program and observe
execution

• Simplest form: run program, check output
• More sophisticated analyses require finer-

grained observations

E.g., buffer overflow detection tool
would likely need to instrument:
• Memory accesses
• Allocations and deallocations
• Pointer arithmetic

Instrumentation Choices

23

1) Instrumentation level
• Source-level
• Binary-level
• Intermediate-language level

2) Instrumentation time
• Static instrumentation
• Dynamic/runtime instrumentation

Source vs binary-level

24

SOURCE BINARY
Source access

Recompiling

Ease of instrumentation

Information available

foo() {
int x = 7, b[4] = {0,1,2,3};
…
b[4] = 4;
…

7
3
2
1
0

b[3]
x

b[0]
b[1]

advantage, disadvantage (not absolute)

b[2]

. . .

Intermediate-level is somewhere in-between,
depending on the intermediate language

Static vs Dynamic Instrumentation

25

Static instrumentation: change code before it is run, generate
new binary, run it
Dynamic instrumentation: instrument programs as they run,
like an interpreter

STATIC DYNAMIC
Tracking dependencies –

Relinking –
Dynamically changing instrumentation – +

Self-modifying code – +
Performance –

Ease of implementing (esp. source) –

advantage, disadvantage (not absolute)

Back to DSE: EXE vs KLEE

• EXE: Static instrumentation @ source-level
• KLEE: Dynamic instrumentation @

intermediate level (LLVM)

26

27

Running EXE

$ exe-cc bpf.c
$./a.out

CIL gcc
bpf.c bpf_exe.c

libexe.a

a.out

[CIL: Intermediate Language and Tools for Analysis and Transformation of C Programs
Necula, McPeak, Rahul, and Weimer, CC 2002]

exe-cc: x = y

sym(&x) =

Pointer to symbolic expression, if x is symbolic

NULL, if x is concrete

28

if (sym(&y) == NULL)

x = y;
sym(&x) = NULL;

else

sym(&x) = sym(&y);

x = y;

exe-cc: v = x OP y

sym_exp(OP, Sx, Sy) =

create the symbolic expression Sx OP Sy

ct(x) = create constant expression with value c

29

v = x OP y if (sym(&x) == NULL && sym(&y) == NULL)

v = x OP y;

sym(&v) = NULL;

else if (sym(&x) == NULL)

sym(&v) = sym_exp(OP, ct(x), sym(&y));

else if (sym(&y) == NULL)

sym(&v) = sym_exp(OP, sym(&x), ct(y));

else

sym(&v) = sym_exp(OP, sym(&x), sym(&y));

exe-cc: if (x) s1; else s2

30

void push_constr(c) {

add_sym_constr(c, PC);

if (unsat(PC))

kill_path();

}

if (x)
s1;

else s2;

if (sym(&x) == NULL)

if (x)

goto s1_label;

else goto s2_label;

else

if (fork() == 0)

push_constr(sym_exp(NEQ,

sym(&x), ct(0)));

goto s1_label;

else

push_constr(sym_exp(EQ,

sym(&x), ct(0)));

goto s2_label;

Rough sketch: some aspects (e.g, scheduling) and refinements omitted

exe-cc

• All other cases can be reduced to the cases
above, or slight variations of them, via
simple syntactic transformations, e.g.,
introducing temporary variables
– CIL helps with most of this

• If there are any questions about any
program constructs, let me know

• You can also refer to the extended journal
version, available on my website

31

32

Running KLEE

$ clang –c –emit-llvm bpf.c
$ klee bpf.bc

Clang
bpf.c

KLEE
bpf.bc

KLEE: LLVM Bitcode Interpreter

• Works as a mixed concrete/symbolic interpreter for LLVM bitcode

Instruction *i = ki->inst;
switch (i->getOpcode()) {

case Instruction::Ret:
…
case Instruction::Br:

// if both sides feasible, fork
…

$./program

$ klee program.bc

for all concrete inputs,
(modulo extra
messages, logging, etc.)

DSE Scalability Challenges

Constraint solvingPath exploration
• Employing search heuristics

[CCS’06, OSDI’08, ICSE’12,
ESEC/FSE’13]

• Dynamically eliminating
redundant paths [TACAS’08]

• Statically merging paths
[EuroSys’11]

• Using existing test suites to
prioritize execution [ICSE’12]

• Targeting patches [ESEC/FSE’13,
ICSE’16]

• Bit-level modeling of memory
[CCS’06, IEEE S&P’06]

• Caching [CCS’06, OSDI’08]

• Exploiting subset/superset
relations [OSDI’08]

• Using rewrite rules
[EuroSys’11, HVC’11]

• Using a portfolio of solvers
[CAV’13]

• etc.
Examples from our work; lots of great work from other groups.

Path Exploration Challenges

Naïve exploration can easily get “stuck”

• Employing search heuristics
• Dynamically eliminating redundant paths
• Statically merging paths
• Using existing regression test suites to

prioritize execution
• etc.

35

Search Heuristics

36

• Depth-First Search
• Advantage?

• Breadth-First Search
• Advantage?

• Coverage-optimized search (best-first)
• Random state selection
• Random path search
• etc.

Search Heuristics

• EXE’s best-first heuristic to optimize coverage
• Pick the process at the line of code run the fewest

number of times
• Run it in DFS mode for a while, then iterate

• KLEE’s Random Path Selection
• See next slide

37

Random Path Selection

• NOT random state selection
• Favors paths high in the tree

– fewer constraints
• Avoid starvation

– e.g. symbolic loop

0.5

0.25

0.1250.06250.0625

Key idea: subtrees have equal
prob. of being selected, irresp.
of their size

Which Search Heuristic?

One approach [KLEE]: use multiple heuristics in
a round-robin fashion!

• Protects against individual heuristics getting stuck in
a local maximum

39

Eliminating Redundant Paths

• If two paths reach the same program point
with the same constraint sets, we can prune
one of them

• We can discard from the constraint sets of
each path those constraints involving
memory which is never read again

40

[RWset: Attacking Path Explosion in Constraint-Based Test Generation,
Boonstoppel, Cadar, Engler, TACAS 2008]

. . . flag = 1

flag = 0

arg2 > 100

flag = 1

arg2 £ 100

process(data, 1) process(data, 1)

data, arg1, arg2 = *

flag = 0;

if (arg1 > 100)
flag = 1;

if (arg2 > 100)
flag = 1;

process(data, flag);

arg1 > 100 arg1 £ 100

arg2 > 100

arg1 > 100

if arg2 not read by
process(data, 1)

Many Redundant Paths

0

500

1000

1500

2000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

 Base
 Redundant path elimination

PCI driver (MINIX) – 1h runs

N
on

-r
ed

un
da

nt
 e

xp
lo

re
d

st
at

es

Generated tests 42

Lots of Redundant Paths

tcpdump

udhcpd sb16 lance

pcreexpatbpf

43

0%

10%

20%

30%

40%

50%

60%

70%

0 2000 4000 6000 8000

 Base
 Redundant path elimination

Redundant Path Elimination

PCI driver (MINIX) – 1h runs

Generated tests

Br
an

ch
 c

ov
er

ag
e

(%
)

44

Statically Merging Paths

if (a > b)
max = a;

else max = b;

a > b
a > b a ≤ b

max = a

TRUE FALSE

max = b

Default behaviour

if (a > b)
max = a;

else max = b;

Phi-Node Folding (when no side effects)

max = select(a>b, a, b)

Statically Merging Paths

for (i=0; i < N; i++) {
if (a[i] > b[i])

max[i] = a[i];
else max[i] = b[i];

}

morph computer vision algorithm: 2256 à 1

• Default: 2N paths
• Phi-node folding: 1 path

Path merging Outsourcing problem
to constraint solver≡

46

$ cd lighttpd-1.4.29
$ make check

...

./cachable.t ok

./core-404-handler.t .. ok

./core-condition.t ok

./core-keepalive.t ok

./core-request.t ok

./core-response.t ok

./core-var-include.t .. ok

./core.t ok

./lowercase.t ok

./mod-access.t ok

...

Using Existing Regression Suites

• Most applications come
with a manually-written
regression test suite

Regression Suites

48

• Execute each path
with a single set of
inputs

• Often exercise the
general case of a
program feature,
missing corner cases

CONS
• Designed to execute

interesting program
paths

• Often achieve good
coverage of different
program features

PROS

ZESTI:
Using Existing Regression Suites

49

1. Use the paths executed by the regression suite to
bootstrap the exploration process (to benefit from
the coverage of the manual test suite and find
additional errors on those paths)

2. Incrementally explore paths around the dangerous
operations on these paths, in increasing distance
from the dangerous operations (to test all possible
corner cases of the program features exercised by
the test suite)

[make test-zesti: A Symbolic Execution Solution for Improving Regression Testing ,
Marinescu, Cadar, ICSE 2012]

Multipath Analysis
main(argv, argc)

exit(0)

✓

sensitive instruction
divergence point

✗
Bounded symbolic execution

Bounded symbolic execution

ZESTI and test drivers

• No need to construct a test driver
– Existing tests are drivers!
– Developers often do a good job choosing the

right number and size of inputs

51

Scalability Challenges

Constraint solving
challenges

Path exploration
challenges

Constraint solving
challenges

52

Constraint Solving Challenges

1. Accuracy: need bit-level modeling of memory:
• Systems code often observes the same bytes in

different ways: e.g., using pointer casting to treat an
array of chars as a network packet, inode, etc.

• Bugs in systems code are often triggered by corner
cases related to pointer/integer casting and arithmetic
overflows

2. Performance: real programs generate many
expensive constraints

53

Our Constraint Solver: STP

• Modern constraint solver, based on eager translation
to SAT (uses MiniSAT)

• Developed at Stanford by Ganesh and Dill, initially
targeted to (and driven by) EXE

• Two data types: bitvectors (BVs) and arrays of BVs
• We model each memory block as an array of 8-bit BVs
• We can translate all C expressions into STP constraints

with bit-level accuracy
– Main exception: floating-point

54

Constraint Solving: Performance

• Inherently expensive (NP-complete)
• Invoked at every branch

• Key insight: exploit the characteristics of
constraints generated by symex

56

Some Constraint Solving Statistics
[after optimizations]

UNIX utilities (and many
other benchmarks)
• Large number of queries

• Most queries <0.1s

• Most time spent in the
solver (before and after
optimizations!)

Application Instrs/s Queries/s Solver %
[695 7.9 97.8

base64 20,520 42.2 97.0

chmod 5,360 12.6 97.2

comm 222,113 305.0 88.4

csplit 19,132 63.5 98.3

dircolors 1,019,795 4,251.7 98.6

echo 52 4.5 98.8

env 13,246 26.3 97.2

factor 12,119 22.6 99.7

join 1,033,022 3,401.2 98.1

ln 2,986 24.5 97.0

mkdir 3,895 7.2 96.6

Avg: 196,078 675.5 97.1

1h runs using KLEE with
DFS and no caching

[Multi-solver Support in Symbolic Execution,
Palikareva and Cadar, CAV’13]

Constraint Solving Optimizations

Implemented at several different levels:
• SAT solvers
• SMT solvers
• Symbolic execution tools

58

Higher-Level Constraint
Solving Optimizations

• Two simple and effective optimizations
– Constraint independence optimization a.k.a.

Eliminating irrelevant constraints
– Caching constraints and solutions

59

Constraint Independence Optimization or
Eliminating Irrelevant Constraints

• In practice, each branch usually depends on a small number
of variables

w+z > 100
2 * w – 1 < 12345
x + y > 10
z & -z = z
x < 10 ?

…
…
if (x < 10) {

…
}

Caching Constraints

w+z > 100
2 * w – 1 < 12345
x + y > 10
z & -z = z
x < 10 ?

x + y > 10
x < 10

SAT x + y > 10
x < 10

?

w+z > 100
2 * w – 1 < 12345
x + y > 10
z & -z != z
x < 10 ?

Caching Solutions

2 * y < 100
x > 3
x + y > 10

x = 5
y = 15

2 * y < 100
x + y > 10

2 * y < 100
x > 3
x + y > 10
x < 10

• Static set of branches: lots of similar constraint sets

Eliminating constraints
cannot invalidate solution

Adding constraints often
does not invalidate solution

x = 5
y = 15

x = 5
y = 15

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1

 Base
 Irrelevant Constraint Elimination
 Caching
 Irrelevant Constraint Elimination + Caching

Significant Speedup

Aggregated data over 73 applications

Ti
m

e
(s

)

Executed instructions (normalized) 63

Usage Scenarios

Successfully used our tools to:
• Automatically generate high-coverage test suites
• Discover generic bugs and security vulnerabilities

in complex software
• Enhance the quality of regression testing
• Perform comprehensive patch testing
• Flag potential semantic bugs via crosschecking
• Perform bounded verification of data-parallel

optimizations
68

Bug Finding (EGT, EXE, KLEE, KATCH, etc):
Focus on Systems and Security Critical Code

• Most bugs fixed promptly

69

Applications
Text, binary, shell and file

processing tools
GNU Coreutils, findutils, binutils, diffutils,

Busybox, MINIX (~500 apps)
Network servers Bonjour, Avahi, udhcpd, lighttpd, etc.

Library code libdwarf, libelf, PCRE, uClibc, etc.

File systems ext2, ext3, JFS for Linux

Device drivers pci, lance, sb16 for MINIX

Computer vision code OpenCV (filter, remap, resize, etc.)

OpenCL code Parboil, Bullet, OP2

md5sum -c t1.txt

mkdir -Z a b

mkfifo -Z a b

mknod -Z a b p

seq -f %0 1

printf %d ‘

pr -e t2.txt

tac -r t3.txt t3.txt

paste -d\\ abcdefghijklmnopqrstuvwxyz

ptx -F\\ abcdefghijklmnopqrstuvwxyz

ptx x t4.txt

cut –c3-5,8000000- --output-d=: file

Coreutils Commands of Death

[OSDI 2008, ICSE 2012]

t1.txt: \t \tMD5(
t2.txt: \b\b\b\b\b\b\b\t

t3.txt: \n
t4.txt: A

Disk of Death (JFS, Linux 2.6.10)

Offset Hex Values
00000 0000 0000 0000 0000 0000 0000 0000 0000

.
08000 464A 3135 0000 0000 0000 0000 0000 0000
08010 1000 0000 0000 0000 0000 0000 0000 0000
08020 0000 0000 0100 0000 0000 0000 0000 0000
08030 E004 000F 0000 0000 0002 0000 0000 0000
08040 0000 0000 0000 . . .

• 64th sector of a 64K disk image
• Mount it and PANIC your kernel

[IEEE S&P 2008]

Packet of Death (Bonjour)

Offset Hex Values
0000 0000 0000 0000 0000 0000 0000 0000 0000
0010
0020 00FB 0000 14E9 002A 0000 0000 0000 0001
0030 0000 0000 0000 055F 6461 6170 045F 7463
0040 7005 6C6F 6361 6C00 000C 0001

003E 0000 4000 FF11 1BB2 7F00 0001 E000

• Causes Bonjour to abort, potential DoS attack
• Confirmed by Apple, security update released

[IEEE TSE 2014]

Testing Semantics-Preserving
Evolution via Crosschecking

Lots of available opportunities as code is:
Optimized frequently Refactored frequently

73

We can find any mismatches in their behavior by:
1. Using symbolic execution to explore pairs of paths

2. Comparing the (symbolic) output b/w versions

Unoptimized version

Optimized version

Symbolic
execution

engine
Mismatches

Crosschecking Two Software Versions

74

if (x == 10)
return 12;

if (x >= 0) {
if (x%2 == 0)

x++;
x++;

}
return x;

if (x < 0)
x -= 2;

else
if (x%2 != 0)

x--;
return x+2;

x = *

x < 0

x == 10
FALSE

Infeasible

x >= 0

TRUE

Infeasible

TRUE

FALSE
x

x < 0

x-2+2

TRUE

Crosschecking Two Software Versions

75

if (x == 10)
return 12;

if (x >= 0) {
if (x%2 == 0)

x++;
x++;

}
return x;

if (x < 0)
x -= 2;

else
if (x%2 != 0)

x--;
return x+2;

x = *

FALSE

x+2

x == 10
FALSE

x >= 0

TRUE
Infeasible

TRUE

FALSE

x < 0 x%2≠0

FALSE

x ≥ 0

x%2 = 0

12 x%2=0
Infeasible

FALSE

x+1+1

TRUE

x = 10

x ≠ 10

Crosschecking: Discussion

• Can find semantic errors
• No need to write (additional) specifications
• Crosschecking queries can be solved faster
• Can support constraint types not (efficiently)

handled by the underlying solver, e.g., floating-point

Many crosschecking queries can be
syntactically proved to be equivalent

76

1

<<

2
*

Crosschecking: Advantages

Many crosschecking queries can be
syntactically proved to be equivalent

via simple rewrite rules
77

SIMD Optimizations

Most processors offer support
for SIMD instructions
• Can operate on multiple data

concurrently
• Many algorithms can make

use of them (e.g., computer
vision algorithms)

[EuroSys 2011]

OpenCV

Popular computer vision
library from Intel and
Willow Garage

[Corner detection algorithm]

80

Computer vision
algorithms were
optimized to make
use of SIMD

OpenCV Results

• Crosschecked 51 SIMD-optimized versions
against their reference scalar implementations
• Found mismatches in 10

• Most mismatches due to tricky FP-related issues:
• Precision
• Rounding
• Associativity
• Distributivity
• NaN values

[EuroSys 2011]

OpenCV Results

• Crosschecked 51 SIMD-optimized versions
against their reference scalar implementations
• Verified the correctness of 41 of them up to a certain image

size (bounded verification)

• Key idea:
• Tame path explosion by statically merging paths

[EuroSys 2011]

OpenCV Results

Surprising find: min/max not commutative nor associative!

min(a,b) = a < b ? a : b

a < b (ordered) à always returns false if one
of the operands is NaN

min(NaN, 5) = 5
min(5, NaN) = NaN

min(min(5, NaN), 100) = min(NaN, 100) = 100
min(5, min(NaN, 100)) = min(5, 100) = 5

83

Symbolic Execution
Summary

• Automatic, does not require test cases
• Highly systematic

– reaches deep code paths
– achieves high statement/branch coverage
– can reason about all possible values on a path

• Finds deep bugs
– including those depending on specific values and/or

memory layout
– including functional bugs (see crosschecking study)
– generates inputs that hit the bugs found

• Scalability challenges
– Path exploration
– Constraint solving

KLEE: Freely Available as Open-Source
Demo later in the course

• Flexible symbolic execution tool based on the LLVM
framework and the STP solver, primarily for C code

• Over 300 subscribers to the klee-dev mailing list
• Used/tried out by a large number of academic and

industrial users
• Extended in many interesting ways by several research

groups, in the areas of wireless sensor networks, automated
debugging, schedule memoization in multithreaded code,
exploit generation, online gaming, etc.

91

KLEE: http://klee.github.io

Want to get involved? Let me know!

