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Motivation

• Testing is hard
– Manual testing is very expensive
– Random (“fuzz”) testing is often ineffective

• Hard to hit narrow input ranges
• Hard to generate structured input

int bad_abs(int x) {
if(x < 0)
return –x;
if(x == 12345678)

return –x;
return x;

}



EXE
Random

Number of test cases

Sym Ex vs. Random Testing
(EXE on Berkeley Packet Filter)

[ EXE: Automatically generating inputs of death  
C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, D. Engler, CCS 2006 ]



Sym Ex vs. Manual Testing
(KLEE on Coreutils)
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[ KLEE: Unassisted and Automatic Generation of High-Coverage Tests for Complex Systems Programs
C. Cadar, D. Dunbar, D. Engler, OSDI 2006 ]



• Dynamic analysis requires test cases
– It cannot reason about all possible values on a path

• Static analysis is imprecise
– hard to find bugs dependent on specific values and/or 

memory layout; functional bugs (e.g. crosschecking)
– false positives
– does not generate test cases
+ but it usually finds more bugs
+ easier to apply (don’t need full program)

• Both are complementary
– No reason not to run static; can use static info to improve 

symbolic execution
– Can run tests cases generated by DSE on dynamic tools

Sym ex vs dyn/static analysis



Dynamic Symbolic Execution
(or Symbolic Execution or DSE)

• Automatic
– does not require test cases

• Highly systematic
– reaches deep code paths
– achieves high statement/branch coverage
– can reason about all possible values on a path

• Finds deep bugs 
– including those depending on specific values and/or 

memory layout
– including functional bugs (see crosschecking study)

• Generates concrete test cases for explored paths
– error reports for paths hitting a bug
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PCRE – expressions of death

[^[\0^\0]\*-?]{\0                  [\-\`[\0^\0]\`]{\0
[\*-\`[\0^\0]\`-?]{\0              [\*-\`[\0^\0]\`-?]\0
[\*-\`[\0^\0]\`-?]\0                [\-\`[\0^\0]\`-]\0
(?#)\?[[[\0\0]\-]{\0               (?#)\?[[[\0\0]\-]\0
(?#)\?[[[\0\0]\[]\0                 (?#)\?[:[[\0\0]\-]\0   
(?#)\?[[[\0\0]\-]\0                 (?#)\?[[[\0\0]\]\0
(?#)\?[[[\0\0][\0^\0]]\0         (?#)\?[[[\0\0][\0^\0]-]\0
(?#)\?[[[\0\0][\0^\0]\]\0        (?#)\?[=[[\0\0][\0^\0]\?]\0
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Disk of death (JFS, Linux 2.6.10)

[ Automatically generating malicious disks using symbolic execution  
J. Yang, C. Sar, P. Twohey, C. Cadar, D. Engler , IEEE Security 2006 ]
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Basic idea

§ Run program on symbolic input, whose initial 
value is anything

§ Program instructions become operations on 
symbolic expressions

§ At conditionals that use symbolic inputs, fork 
execution and follow both paths:
§ On true branch, add constraint that condition is true
§ On false, that it is not

§ When a path terminates, generate a test case by 
solving the constraints on that path



Dynamic SymEx in Practice

• Significant interest in the last few years
• Several dynamic symbolic execution/concolic

tools available as open-source:
– KLEE, CREST, SYMBOLIC JPF, etc.

• Started to be explored/adopted by industry:
– Microsoft, Fujitsu, Hitachi, Intel, NASA, etc. 



magic ≠ 
0xEEEE

magic =
0xEEEE

img = *

Toy Example

TRUE

int main(int argc, char** argv) {
...
image_t img = read_img(file);
if (img.magic != 0xEEEE)

return -1;
if (img.h > 1024)

return -1;
w = img.sz / img.h;
...

}

magic ≠ 
0xEEEE

return -1

h > 1024 TRUE

h > 1024
return -1

h ≤ 1024

w = sz / h

struct image_t {
unsigned short magic;
unsigned short h, sz;
...



magic ≠ 
0xEEEE

magic =
0xEEEE

img = *

AAAA0000…
img1.out

TRUE
return -1

h > 1024 TRUE

h > 1024
return -1

h ≤ 1024

EEEE1111…
img2.out

h = 0
TRUE
h = 0

Div by 
zero!

h ≠ 0

EEEE0A00… img4.out

EEEE0000…
img3.out

w = sz / h

magic ≠ 
0xEEEE

int main(int argc, char** argv) {
...
image_t img = read_img(file);
if (img.magic != 0xEEEE)

return -1;
if (img.h > 1024)

return -1;
w = img.sz / img.h;
...

}

struct image_t {
unsigned short magic;
unsigned short h, sz;
...

Toy Example



Some Concepts and Terminology
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x = 1234

x < 0
x < 0 x ³ 0

return x

x ¹ 1234

return -x

return -x

x = 1234

x = *

TRUE

TRUE FALSE

FALSE

• Execution paths of a program can 
be seen as a binary execution tree
– Internal nodes are decision points in 

the program
– Leaves are program exit points

• Execution trees of real programs 
are essentially infinite
– Symbolic execution incrementally 

explores parts of the execution tree
– The leaves of the “current” execution 

tree form the set of active states



Some Concepts and Terminology
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x = 1234

x < 0
x < 0 x ³ 0

return x

x ¹ 1234

return -x

return -x

x = 1234

x = *

TRUE

TRUE FALSE

FALSE

• Each path from the root to a leaf 
represents the execution of an 
equivalent set of inputs

• The conjunction of constraints 
gathered on an execution path is 
called the path condition or path 
constraints (PC)



Feasible vs Infeasible Paths
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x > 2

x > 5
x > 5 x £ 5

x £ 2x > 2

x = *

TRUE

TRUE FALSE

FALSE

How many paths?
int foo(int x) {

if (x > 5)
printf(“>5”);

if (x > 2)
printf(“>2”);

}

x > 2

x £ 2x > 2

TRUE FALSE

x = 6 x = 4 x = 1. . . 
Infeasible

No need 
to add  
implied 
constraints

Symbolic execution 
explores only feasible paths!



Implicit checks for general 
properties:

• Pointer dereferences
• Array indexing
• Division/modulo operations
• Assert statements

All-Value Checks

0 ≤ k< 4TRUE FALSEint foo(unsigned k) {
int a[4] = {3, 1, 0, 4};
k = k % 4;
return a[a[k]];

}

. . . 

{ k = * }

. . . 

TRUE FALSE

Infeasible

. . . 

0 ≤ k < 4 ¬ 0 ≤ k < 4

1
7

All-value checks!
• Errors are found if any buggy 

values exist on that path!
• Discussion: compare with 

regular testing, then Valgrind



Implicit checks for general 
properties:

• Pointer dereferences
• Array indexing
• Division/modulo operations
• Assert statements

All-Value Checks

0 ≤ a[k]< 4TRUE FALSEint foo(unsigned k) {
int a[4] = {3, 1, 0, 4};
k = k % 4;
return a[a[k]];

}

. . . 

Buffer overflow!

{ k = * }

. . . 

All-value checks!
• Errors are found if any buggy 

values exist on that path!
• Discussion: compare with 

regular testing, then Valgrind

FALSETRUE

¬ 0 ≤  a[k] < 40 ≤  a[k] < 4

. . . k = 3



Mixed Concrete/Symbolic Execution

1
9

• All operations that do not depend on the symbolic inputs 
are (essentially) executed as in the original code!

• Ability to interact with the outside environment
– System calls, uninstrumented libraries

• Only relevant code executed symbolically
– Without the need to extract it explicitly
– For many real programs (and test drivers) most operations are 

concrete
– The statements executed symbolically form the symbolic slice

[Discussion: scalability of symbolic execution?]



EXE and KLEE

EXE/
K L E E

Constraint Solver (STP)

x = 3

x = -2

x = 1234

x = 3

C code

x ³ 0
x ¹ 1234

2
1



Implementing Dynamic Analyses

22

• Dynamic analysis: run program and observe 
execution

• Simplest form: run program, check output
• More sophisticated analyses require finer-

grained observations

E.g., buffer overflow detection tool 
would likely need to instrument:
• Memory accesses
• Allocations and deallocations
• Pointer arithmetic



Instrumentation Choices
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1) Instrumentation level
• Source-level
• Binary-level
• Intermediate-language level

2) Instrumentation time
• Static instrumentation
• Dynamic/runtime instrumentation



Source vs binary-level
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SOURCE BINARY
Source access

Recompiling

Ease of instrumentation

Information available

foo() {
int x = 7, b[4] = {0,1,2,3};
…
b[4] = 4;
…

7
3
2
1
0

b[3]
x

b[0]
b[1]

advantage,        disadvantage (not absolute)

b[2]

. . .

Intermediate-level is somewhere in-between, 
depending on the intermediate language



Static vs Dynamic Instrumentation
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Static instrumentation: change code before it is run, generate 
new binary, run it
Dynamic instrumentation: instrument programs as they run, 
like an interpreter

STATIC DYNAMIC
Tracking dependencies –

Relinking –
Dynamically changing instrumentation – +

Self-modifying code – +
Performance –

Ease of implementing (esp. source) –

advantage,        disadvantage (not absolute)



Back to DSE: EXE vs KLEE

• EXE: Static instrumentation @ source-level
• KLEE: Dynamic instrumentation @ 

intermediate level (LLVM)

26
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Running EXE

$ exe-cc bpf.c
$ ./a.out

CIL gcc
bpf.c bpf_exe.c

libexe.a

a.out

[CIL: Intermediate Language and Tools for Analysis and Transformation of C Programs 
Necula, McPeak, Rahul, and Weimer, CC 2002]



exe-cc: x = y

sym(&x) = 

Pointer to symbolic expression, if x is symbolic

NULL, if x is concrete

28

if (sym(&y) == NULL)

x = y;
sym(&x) = NULL;

else

sym(&x) = sym(&y); 

x = y;



exe-cc: v = x OP y

sym_exp(OP, Sx, Sy) = 

create the symbolic expression Sx OP Sy

ct(x) = create constant expression with value c

29

v = x OP y if (sym(&x) == NULL && sym(&y) == NULL)

v = x OP y;

sym(&v) = NULL;

else if (sym(&x) == NULL)

sym(&v) = sym_exp(OP, ct(x), sym(&y));

else if (sym(&y) == NULL)

sym(&v) = sym_exp(OP, sym(&x), ct(y));

else            

sym(&v) = sym_exp(OP, sym(&x), sym(&y));



exe-cc: if (x) s1; else s2
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void push_constr(c) {

add_sym_constr(c, PC);

if (unsat(PC))

kill_path();

}

if (x)
s1;

else s2;

if (sym(&x) == NULL)

if (x)

goto s1_label;

else goto s2_label;

else

if (fork() == 0)

push_constr(sym_exp(NEQ,

sym(&x), ct(0)));

goto s1_label;

else

push_constr(sym_exp(EQ,

sym(&x), ct(0)));

goto s2_label;

Rough sketch: some aspects (e.g, scheduling) and refinements omitted



exe-cc

• All other cases can be reduced to the cases 
above, or slight variations of them, via 
simple syntactic transformations, e.g., 
introducing temporary variables
– CIL helps with most of this

• If there are any questions about any 
program constructs, let me know

• You can also refer to the extended journal 
version, available on my website

31
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Running KLEE

$ clang –c –emit-llvm bpf.c
$ klee bpf.bc

Clang
bpf.c

KLEE
bpf.bc



KLEE: LLVM Bitcode Interpreter

• Works as a mixed concrete/symbolic interpreter for LLVM bitcode

Instruction *i = ki->inst;
switch (i->getOpcode()) {

case Instruction::Ret:
…
case Instruction::Br: 

// if both sides feasible, fork 
…

$ ./program

$ klee program.bc

for all concrete inputs,
(modulo extra 
messages, logging, etc.)



DSE Scalability Challenges

Constraint solvingPath exploration
• Employing search heuristics 

[CCS’06, OSDI’08, ICSE’12, 
ESEC/FSE’13]

• Dynamically eliminating 
redundant paths [TACAS’08]

• Statically merging paths 
[EuroSys’11]

• Using existing test suites to 
prioritize execution [ICSE’12]

• Targeting patches [ESEC/FSE’13, 
ICSE’16]

• Bit-level modeling of memory 
[CCS’06, IEEE S&P’06]

• Caching [CCS’06, OSDI’08]

• Exploiting subset/superset 
relations [OSDI’08]

• Using rewrite rules 
[EuroSys’11, HVC’11]

• Using a portfolio of solvers 
[CAV’13]

• etc.
Examples from our work; lots of great work from other groups.



Path Exploration Challenges

Naïve exploration can easily get “stuck”

• Employing search heuristics
• Dynamically eliminating redundant paths
• Statically merging paths
• Using existing regression test suites to 

prioritize execution
• etc.

35



Search Heuristics

36

• Depth-First Search
• Advantage?

• Breadth-First Search
• Advantage?

• Coverage-optimized search (best-first)
• Random state selection
• Random path search
• etc.



Search Heuristics

• EXE’s best-first heuristic to optimize coverage
• Pick the process at the line of code run the fewest 

number of times
• Run it in DFS mode for a while, then iterate

• KLEE’s Random Path Selection
• See next slide

37



Random Path Selection

• NOT random state selection
• Favors paths high in the tree

– fewer constraints
• Avoid starvation

– e.g. symbolic loop

0.5

0.25

0.1250.06250.0625

Key idea: subtrees have equal 
prob. of being selected, irresp. 
of their size



Which Search Heuristic?

One approach [KLEE]: use multiple heuristics in 
a round-robin fashion!

• Protects against individual heuristics getting stuck in 
a local maximum

39



Eliminating Redundant Paths

• If two paths reach the same program point 
with the same constraint sets, we can prune 
one of them

• We can discard from the constraint sets of 
each path those constraints involving 
memory which is never read again

40

[RWset: Attacking Path Explosion in Constraint-Based Test Generation,  
Boonstoppel, Cadar, Engler, TACAS 2008]



. . . flag = 1

flag = 0

arg2 > 100

flag = 1

arg2 £ 100

process(data, 1) process(data, 1)

data, arg1, arg2 = *

flag =  0;

if (arg1 > 100)  
flag = 1;

if (arg2 > 100)
flag = 1;

process(data, flag);

arg1 > 100 arg1 £ 100

arg2 > 100

arg1 > 100

if arg2  not read by 
process(data, 1)



Many Redundant Paths
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Lots of Redundant Paths

tcpdump

udhcpd sb16 lance

pcreexpatbpf

43
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Statically Merging Paths

if (a > b)
max = a;

else max = b;

a > b
a > b a ≤ b

max = a

TRUE FALSE

max = b

Default behaviour

if (a > b)
max = a;

else max = b;

Phi-Node Folding (when no side effects)

max = select(a>b, a, b)



Statically Merging Paths

for (i=0; i < N; i++) {
if (a[i] > b[i])

max[i] = a[i];
else max[i] = b[i];

}

morph computer vision algorithm: 2256 à 1

• Default:  2N paths
• Phi-node folding: 1 path

Path merging Outsourcing problem 
to constraint solver≡

46



$ cd lighttpd-1.4.29
$ make check

...

./cachable.t .......... ok     

./core-404-handler.t .. ok   

./core-condition.t .... ok     

./core-keepalive.t .... ok   

./core-request.t ...... ok     

./core-response.t ..... ok     

./core-var-include.t .. ok     

./core.t .............. ok     

./lowercase.t ......... ok     

./mod-access.t ........ ok   

...

Using Existing Regression Suites

• Most applications come 
with a manually-written 
regression test suite



Regression Suites

48

• Execute each path 
with a single set of 
inputs

• Often exercise the 
general case of a 
program feature, 
missing corner cases

CONS
• Designed to execute 

interesting program 
paths

• Often achieve good 
coverage of different 
program features

PROS



ZESTI:
Using Existing Regression Suites

49

1. Use the paths executed by the regression suite to 
bootstrap the exploration process (to benefit from 
the coverage of the manual test suite and find 
additional errors on those paths)

2. Incrementally explore paths around the dangerous 
operations on these paths, in increasing distance 
from the dangerous operations (to test all possible 
corner cases of the program features exercised by 
the test suite)

[make test-zesti:  A Symbolic Execution Solution for Improving Regression Testing ,  
Marinescu, Cadar, ICSE 2012]



Multipath Analysis
main(argv, argc)

exit(0)

✓

sensitive instruction
divergence point

✗
Bounded symbolic execution

Bounded symbolic execution



ZESTI and test drivers

• No need to construct a test driver
– Existing tests are drivers!
– Developers often do a good job choosing the 

right number and size of inputs

51



Scalability Challenges

Constraint solving 
challenges

Path exploration 
challenges

Constraint solving 
challenges

52



Constraint Solving Challenges

1. Accuracy: need bit-level modeling of memory:
• Systems code often observes the same bytes in 

different ways: e.g., using pointer casting to treat an 
array of chars as a network packet, inode, etc.

• Bugs in systems code are often triggered by corner 
cases related to pointer/integer casting and arithmetic 
overflows

2. Performance: real programs generate many 
expensive constraints

53



Our Constraint Solver: STP

• Modern constraint solver, based on eager translation  
to SAT (uses MiniSAT)

• Developed at Stanford by Ganesh and Dill, initially 
targeted to (and driven by) EXE

• Two data types: bitvectors (BVs) and arrays of BVs
• We model each memory block as an array of 8-bit BVs
• We can translate all C expressions into STP constraints 

with bit-level accuracy
– Main exception: floating-point

54



Constraint Solving: Performance

• Inherently expensive (NP-complete)
• Invoked at every branch

• Key insight: exploit the characteristics of 
constraints generated by symex

56



Some Constraint Solving Statistics 
[after optimizations]

UNIX utilities (and many 
other benchmarks)
• Large number of queries

• Most queries <0.1s

• Most time spent in the 
solver (before and after 
optimizations!)

Application Instrs/s Queries/s Solver %
[ 695 7.9 97.8

base64 20,520 42.2 97.0

chmod 5,360 12.6 97.2

comm 222,113 305.0 88.4

csplit 19,132 63.5 98.3

dircolors 1,019,795 4,251.7 98.6

echo 52 4.5 98.8

env 13,246 26.3 97.2

factor 12,119 22.6 99.7

join 1,033,022 3,401.2 98.1

ln 2,986 24.5 97.0

mkdir 3,895 7.2 96.6

Avg: 196,078 675.5 97.1

1h runs using KLEE with 
DFS and no caching

[Multi-solver Support in Symbolic Execution, 
Palikareva and Cadar, CAV’13]



Constraint Solving Optimizations

Implemented at several different levels:
• SAT solvers
• SMT solvers
• Symbolic execution tools

58



Higher-Level Constraint 
Solving Optimizations

• Two simple and effective optimizations
– Constraint independence optimization a.k.a. 

Eliminating irrelevant constraints
– Caching constraints and solutions

59



Constraint Independence Optimization or 
Eliminating Irrelevant Constraints

• In practice, each branch usually depends on a small number 
of variables

w+z > 100
2 * w – 1 < 12345
x + y > 10
z & -z = z
x < 10 ?

…
…
if (x < 10) {

…
}                   



Caching Constraints

w+z > 100
2 * w – 1 < 12345
x + y > 10
z & -z = z
x < 10 ?

x + y > 10
x < 10

SAT x + y > 10
x < 10

?

w+z > 100
2 * w – 1 < 12345
x + y > 10
z & -z != z
x < 10 ?



Caching Solutions

2 * y < 100
x > 3
x + y > 10

x = 5
y = 15

2 * y < 100
x + y > 10

2 * y < 100
x > 3
x + y > 10
x < 10

• Static set of branches: lots of similar constraint sets

Eliminating constraints
cannot invalidate solution

Adding constraints often 
does not invalidate solution

x = 5
y = 15

x = 5
y = 15
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Usage Scenarios

Successfully used our tools to:
• Automatically generate high-coverage test suites
• Discover generic bugs and security vulnerabilities 

in complex software
• Enhance the quality of regression testing
• Perform comprehensive patch testing
• Flag potential semantic bugs via crosschecking
• Perform bounded verification of data-parallel 

optimizations
68



Bug Finding (EGT, EXE, KLEE, KATCH, etc):
Focus on Systems and Security Critical Code

• Most bugs fixed promptly

69

Applications
Text, binary, shell and file 

processing tools
GNU Coreutils, findutils, binutils, diffutils,

Busybox, MINIX (~500 apps)
Network servers Bonjour, Avahi, udhcpd, lighttpd, etc.

Library code libdwarf, libelf, PCRE, uClibc, etc.

File systems ext2, ext3, JFS for Linux

Device drivers pci, lance, sb16 for MINIX

Computer vision code OpenCV (filter, remap, resize, etc.)

OpenCL code Parboil, Bullet, OP2



md5sum -c t1.txt

mkdir -Z a b

mkfifo -Z a b

mknod -Z a b p

seq -f %0 1

printf %d ‘

pr -e t2.txt

tac -r t3.txt t3.txt

paste -d\\ abcdefghijklmnopqrstuvwxyz

ptx -F\\ abcdefghijklmnopqrstuvwxyz

ptx x t4.txt

cut –c3-5,8000000- --output-d=: file

Coreutils Commands of Death

[OSDI 2008,  ICSE 2012]

t1.txt:    \t \tMD5(
t2.txt:    \b\b\b\b\b\b\b\t

t3.txt:    \n
t4.txt:    A



Disk of Death (JFS, Linux 2.6.10)

Offset Hex Values
00000 0000 0000 0000 0000 0000 0000 0000 0000

. . . . . .
08000 464A 3135 0000 0000 0000 0000 0000 0000
08010 1000 0000 0000 0000 0000 0000 0000 0000
08020 0000 0000 0100 0000 0000 0000 0000 0000
08030 E004 000F 0000 0000 0002 0000 0000 0000
08040 0000 0000 0000 . . .

• 64th sector of a 64K disk image
• Mount it and PANIC your kernel

[IEEE S&P 2008]



Packet of Death (Bonjour)

Offset Hex Values
0000 0000 0000 0000 0000 0000 0000 0000 0000
0010
0020 00FB 0000 14E9 002A 0000 0000 0000 0001
0030 0000 0000 0000 055F 6461 6170 045F 7463
0040 7005 6C6F 6361 6C00 000C 0001

003E 0000 4000 FF11 1BB2 7F00 0001 E000

• Causes Bonjour to abort, potential DoS attack
• Confirmed by Apple, security update released

[IEEE TSE 2014]



Testing Semantics-Preserving 
Evolution via Crosschecking

Lots of available opportunities as code is:
Optimized frequently Refactored frequently

73

We can find any mismatches in their behavior by:
1. Using symbolic execution to explore pairs of paths

2. Comparing the (symbolic) output b/w versions

Unoptimized version

Optimized version

Symbolic 
execution 

engine
Mismatches



Crosschecking Two Software Versions

74

if (x == 10)
return 12;

if (x >= 0) {
if (x%2 == 0)

x++;
x++;

}
return x;

if (x < 0)
x -= 2;

else
if (x%2 != 0)

x--;
return x+2;

x = *

x < 0

x == 10
FALSE

Infeasible

x >= 0

TRUE

Infeasible

TRUE

FALSE
x

x < 0

x-2+2

TRUE



Crosschecking Two Software Versions

75

if (x == 10)
return 12;

if (x >= 0) {
if (x%2 == 0)

x++;
x++;

}
return x;

if (x < 0)
x -= 2;

else
if (x%2 != 0)

x--;
return x+2;

x = *

FALSE

x+2

x == 10
FALSE

x >= 0

TRUE
Infeasible

TRUE

FALSE

x < 0 x%2≠0

FALSE

x ≥ 0

x%2 = 0

12 x%2=0
Infeasible

FALSE

x+1+1

TRUE

x = 10

x ≠ 10



Crosschecking: Discussion

• Can find semantic errors
• No need to write (additional) specifications
• Crosschecking queries can be solved faster
• Can support constraint types not (efficiently)  

handled by the underlying solver, e.g., floating-point

Many crosschecking queries can be 
syntactically proved to be equivalent

76



1

<<

2
*

Crosschecking: Advantages

Many crosschecking queries can be 
syntactically proved to be equivalent

via simple rewrite rules
77



SIMD Optimizations

Most processors offer support 
for SIMD instructions
• Can operate on multiple data 

concurrently
• Many algorithms can make 

use of them (e.g., computer 
vision algorithms)

[EuroSys 2011]



OpenCV

Popular computer vision 
library from Intel and 
Willow Garage 

[Corner detection algorithm]
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Computer vision 
algorithms were 
optimized to make 
use of SIMD



OpenCV Results

• Crosschecked 51 SIMD-optimized versions 
against their reference scalar implementations
• Found mismatches in 10

• Most mismatches due to tricky FP-related issues:
• Precision
• Rounding 
• Associativity 
• Distributivity
• NaN values

[EuroSys 2011]



OpenCV Results

• Crosschecked 51 SIMD-optimized versions 
against their reference scalar implementations
• Verified the correctness of 41 of them up to a certain image 

size (bounded verification)

• Key idea:
• Tame path explosion by statically merging paths

[EuroSys 2011]



OpenCV Results

Surprising find: min/max not commutative nor associative!

min(a,b) = a < b ? a : b

a < b (ordered) à always returns false if one  
of the operands is NaN

min(NaN, 5) = 5
min(5, NaN) = NaN

min(min(5, NaN),  100) = min(NaN, 100) = 100
min(5, min(NaN, 100))  = min(5, 100) = 5
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Symbolic Execution
Summary

• Automatic, does not require test cases
• Highly systematic

– reaches deep code paths
– achieves high statement/branch coverage
– can reason about all possible values on a path

• Finds deep bugs 
– including those depending on specific values and/or 

memory layout
– including functional bugs (see crosschecking study)
– generates inputs that hit the bugs found 

• Scalability challenges
– Path exploration 
– Constraint solving



KLEE: Freely Available as Open-Source
Demo later in the course

• Flexible symbolic execution tool based on the LLVM 
framework and the STP solver, primarily for C code

• Over 300 subscribers to the klee-dev mailing list 
• Used/tried out by a large number of academic and 

industrial users
• Extended in many interesting ways by several research 

groups, in the areas of wireless sensor networks, automated 
debugging, schedule memoization in multithreaded code, 
exploit generation, online gaming, etc.
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KLEE:  http://klee.github.io

Want to get involved? Let me know!


