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Hardware verification using SAT

A circuit can be described as a transition system in 

Boolean logic

Transition system can be unwound to consider all states 

of hardware reachable within k transitions

SAT solver can be used to check whether the unwound 

transition system can reach bad states

Known as bounded model checking

Look for bugs 

up to bound k

Model checking term used 

mainly for historical reasons

The most widely used technique for hardware verification
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Why is BMC successful?

Almost completely automatic

Designer needs to express correctness property, 

that’s all

Scales to fairly large designs, due to amazing advances 

in SAT solving

No abstraction => no false positives – great for 

finding bugs

In some cases can allow full verification
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Transition systems

x – vector of Boolean state variables

I(x) – predicate describing initial state of system

T(x, x’) – relation describing transitions between states

P(x) – predicate describing correctness property
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Simple example

Boolean state variables: a, b, c, d

Initial states:

I(a, b, c, d) = !(b || c || d)

Transition relation:

T((a, b, c, d), (a’, b’, c’, d’)) =

a’ && (b’ <=> a) && (c’ <=> b) && (d’ <=> c)

Correctness property:

P(a, b, c, d) = !d

What are the 

initial states?
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Simple example

Is it correct?

Explore state space:

Let’s use 1 and 0 for true and false

(1, 0, 0, 0)

(0, 0, 0, 0)

(0, 0, 0, 1)

(0, 0, 1, 0) (1, 0, 0, 1)

(1, 1, 0, 0) (1, 1, 1, 0) (1, 1, 1, 1)

(0, 1, 1, 1)(1, 1, 0, 1)

(1, 0, 1, 0)

(0, 1, 0, 1) (0, 1, 0, 0)

(0, 0, 1, 1)

(1, 0, 1, 1)

(0, 1, 1, 1)
Reachable statesInitial 

states

Bug

(0, 1, 1, 0)
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BMC for transition systems

Given transition system:

I(x) – initial states

T(x, x’) – transition relation

P(x) – correctness property

check formula: I(x0) && T(x0, x1) && ... T(xk-1, xk)&& 

(&& !

Formula requests a sequence of states:

- starting in the initial state

- connected by transitions

- such that at least one state is bad

Formula SAT: P does not hold

UNSAT: P holds along all paths of length <= k

P(x0) && … && P(xk))
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BMC for simple example

I(a, b, c, d) = !(b || c || d)

T((a, b, c, d), (a’, b’, c’, d’)) =

a’ && (b’ <=> a) && (c’ <=> b) && (d’ <=> c)

P(a, b, c, d) = !d

BMC with k = 2

!(b0 || c0 || d0) (a1 && (b1 <=> a0) && (c1 <=> b0) && (d1 <=> c0))&& 

(a2 && (b2 <=> a1) && (c2 <=> b1) && (d2 <=> c1))

&& !(!d0 && !d1 && !d2)

UNSAT: P holds up to depth 2

(1, 0, 0, 0)

(0, 0, 0, 0)

(1, 1, 0, 0) (1, 1, 1, 0)

Initial 

states

&& 
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BMC for simple example

I(a, b, c, d) = !(b || c || d)

T((a, b, c, d), (a’, b’, c’, d’)) =

a’ && (b’ <=> a) && (c’ <=> b) && (d’ <=> c)

P(a, b, c, d) = !d

BMC with k = 3

!(b0 || c0 || d0) (a1 && (               ) && (c1 <=> b0) && (d1 <=> c0))&& 

(a2 && (b2 <=> a1) && (               ) && (d2 <=> c1))

&& !(!d0 && !d1 && !d2 &&      )

SAT: P violated at depth 3

(1, 0, 0, 0)

(0, 0, 0, 0)

(1, 1, 0, 0) (1, 1, 1, 0)

Initial 

states

(a3 && (b3 <=> a2) && (c3 <=> b2) && (               ))

(1, 1, 1, 1)
Bug

b1 <=> a0

c2 <=> b1

d3 <=> c2

!d3

&& 

&& 
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BMC for software

 System-level software: bit-level accuracy is often 

important (if software does bit-manipulation)

 Idea: represent operations using their circuits

 Either:

• Apply BMC for transition systems

or

• Directly unwind loops of program

 We shall study the latter approach

 BMC for software is implemented by the CBMC tool (a 

bounded model checker for C programs) – cprover.org
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Loop-based unwinding: program level

while(c) {

B;

}

if(c) {

B;

if(c) {

assume(false);

}

}

if(c) {

B;

if(c) {

B;

if(c) {

assume(false);

}

}

}

if(c) {

B;

if(c) {

B;

…

if(c) {

B;

if(c) {

assume(false);

}

}

…

}

}

Unwind x 1

Unwind x 2

Unwind x k

k

Resulting loop-free programs can be analysed using: 

predication + SSA renaming + formula generation
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Loop-based unwinding and correctness:

while(c) {

B;

}

if(c) {

B;

if(c) {

B;

…

if(c) {

B;

if(c) {

assume(false);

}

}

…

}

}

Unwind x k

k

P

P’

P’ incorrect => P incorrect

P’ correct does not imply 

P correct

P’ correct tells us that P

cannot go wrong within k

loop iterations

- there may be deeper

bugs

Loop-based unwinding: 

under-approximation
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Exercises:

Write a simple program that is correct for a small loop 

unwinding depth but incorrect for a larger loop unwinding 

depth

We can unwind with k = 0.  What does this look like?  

Can this ever be useful?
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Unwinding depth can be chosen loop-by-loop

while(c) {

B;

}

while(d) {

E;

}

if(c) {

B;

if(c) {

assume(false);

}

}

if(d) {

E;

if(d) {

E;

if(d) {

assume(false);

}

}

}

Unwind x 1

Unwind x 2
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Unwinding with nested loops

while(c) {

while(d) {

E;

}

}

if(c) {

while(d) {

E;

}

if(c) {

while(d) {

E;

}

if(c) {

assume(false);

}

}

}

Inner loop gets 

duplicated

Unwind x 2



16

Unwinding with nested loops

while(c) {

while(d)

E;

}

}

if(c) {

while(d) {

E;

}

if(c) {

while(d) {

E;

}

if(c) {

assume(false);

}

}

}

Unwind x 2

After unwinding an outer loop, we can 

unwind duplicated inner loops using 

different depths if we wish

if(c) {

if(d) {

E;

if(d) {

assume(false);

}

}

if(c) {

if(d) {

E;

if(d) {

E;

if(d) {

assume(false);

}

}

}

if(c) {

assume(false);

}

}

}

Unwind x 1

Unwind x 2
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Unwinding with nested loops: complexity

while(c1) {

while(c2) {

…

while(cd) {

S;

}

…

}

}

while(c1) {

S;

}

while(c2) {

S;

}

…

while(cd) {

S;

}

Suppose S is a loop-free fragment of code

If we unwind all loops k times, how many copies of S will 

there be?

𝒌𝒅𝒌 × 𝒅
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Sound BMC: unwinding assertions

In some domains (especially embedded systems) all loops 

have fixed, relatively small bounds

Makes it possible to completely unwind loops to achieve 

sound verification 

…but if bounds are not explicit, how do we know what it 

means to completely unwind?

while(i < 10) {

// Statements that do

// not modify i

i = i + 1;

}

while(!finished) {

// Statements that guarantee

// setting finished to true

// within 10 iterations

}

Explicit bound Implicit bound
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Unwinding assertions

while(c) {

B;

}

if(c) {

B;

if(c) {

assert(false);

assume(false);

}

}

if(c) {

B;

if(c) {

B;

if(c) {

assert(false);

assume(false);

}

}

}

if(c) {

B;

if(c) {

B;

…

if(c) {

B;

if(c) {

assert(false);

assume(false);

}

}

…

}

}

Unwind x 1

Unwind x 2

Unwind x k

k

Insert check to determine 

whether we have unwound 

completely

Unwinding 

assertion
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Correctness with unwinding assertion
while(c) {

B;

}

if(c) {

B;

if(c) {

B;

…

if(c) {

B;

if(c) {

assert(false);

assume(false);

}

}

…

}

}

Unwind x k

+ 

unwinding 

assertion
k

P

P’

P’ correct => P correct

P’ incorrect does not 

imply P incorrect

P’ incorrect tells us either

- an assertion of P can fail 

(P is incorrect) or

- the unwinding assertion 

can fail (unwinding 

depth was insufficient)
Note: we can tell which 

assertion failed; may deduce 

that P is incorrect

Do we 

need 

both of 

these?

Is this an under- or 

over-approximation?
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A formal definition for over- and under-

approximation

Let P and P’ be programs.

P over-approximates P’

(equivalently, P’ under-approximates P)

if for every pre-condition A and post-condition B we have:

{ A } P { B } is valid

=>

{ A } P’ { B } is valid

A way to think of this:

“P’ can fail in the same or fewer ways than P”

Note: P over- and under-approximates P

We can have distinct programs P and P’ such that P under-

approximates P’ and vice-versa.  What does this mean?
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Over-approximating by adding assertions

Let P be a program and S a statement appearing in P

Let P’ be identical to P, except that S is replaced by:

assert(e);

S

Then P’ is an over-approximation of P according to our 

definition

Justification: P can fail in fewer ways than P’ because the 

addition of assert(e) gives P’ an extra opportunity for 

failure
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Over-approximating using assert(false)

Let P be a program and S a statement appearing in P

Let P’ be identical to P, except that S is replaced by:

assert(false);

T

where T is any statement

Then P’ is an over-approximation of P according to our 

definition

Justification: any input to P that causes S to be executed 

will cause P’ to fail.  On an input that does not cause S to 

be executed in P the programs behave identically
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Unwinding assertion gives over-

approximation

while(c) {

B;

}

if(c) {

B;

if(c) {

B;

…

if(c) {

B;

if(c) {

B;

while(c) {

B;

}

}

}

…

}

}

Unpeel first 

k loop 

iterations 

gives 

precisely 

equivalent 

program

k

if(c) {

B;

if(c) {

B;

…

if(c) {

B;

if(c) {

assert(false);

assume(false);

}

}

…

}

}

k

over-

approximate
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Summary

Bounded model checking can find bugs in programs

Program is under-approximated by unwinding loops up 

to some user-specified depth

Unwinding assertions can be added to enable 

verification of programs for which all loops have 

relatively small upper bounds


