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Static program verification so far

Static verification of call- and loop-free programs: done

- SSA conversion

- Predication to handle conditionals

- SMT-LIB formula generation

- Invoke SMT solver

Now let us see how to handle procedure calls and loops

We start by introducing two new statements: havoc and 

assume

Recap:
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Havoc

havoc v; Sets v to an arbitrary value

Sometimes written as: v = *;

Not an executable statement – only makes sense in the 

context of program analysis

int x = 5;

havoc x;

assert(x == 5);

int x = 5;

havoc x;

assert(x != 5);// May fail // May also fail



4

What’s the point of havoc?

Allows us to over-approximate parts of programs

void foo(int y, int z) {

int x;

int t;

if(z < 0) return;

if(y > z)

t = y;

else

t = 2*x;

if(t > 0)

x = 0;

else

x = z;

assert(x >= 0);

}

void foo_abstract(int y, int z) {

int x;

int t;

if(z < 0) return;

havoc t;

if(t > 0)

x = 0;

else

x = z;

assert(x >= 0);

}

a.k.a. abstract

over-approximate

foo_abstract captures all the behaviours of foo, and more

foo_abstract correct => foo correct

Correct
Correct

implies
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Over-approximation: if, not iff

void foo(int y, int z) {

int x;

int t;

if(z < 0) return;

if(y > z)

t = y;

else

t = 2*x;

if(t > 0)

x = 0;

else

x = z;

assert(x >= 0);

}

void foo_abstract(int y, int z) {

int x;

int t;

if(z < 0) return;

if(y > z)

t = y;

else

t = 2*x;

havoc x;

assert(x >= 0);

}

a.k.a. abstract

over-approximate

We may have foo_abstract incorrect but foo correct

foo_abstract captures all the behaviours of foo, and more

IncorrectCorrect
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Modifies sets again

Recall:

modset(S) returns variables that are possibly modified by 

statement S:
• modset(v = E) = { v }

• modset(assert E) = { }

• modset(S; T) = modset(S) ⋃ modset(T)

• modset(if(E){S} else {T}) = modset(S) ⋃ modset(T)

Let us add:
• modset(havoc v) = { v }

And while we are at it:
• modset(while(E){S}) = modset(S)
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Modifies sets again

Put simply: statement S possibly modifies v if v = e or 
havoc v occurs in S

x = 5; possibly modifies { x }

if(e) x = 4;

else y = 5;
possibly modifies { x, y }

while(x < 100) {

if((x % y) == 0) {

havoc z;

y = y – 1;

}

x = x + 1;

}

possibly modifies { x, y, z }

if and while are 

compound

statements



8

Over-approximation using havoc

Suppose:

- Statement S appears in program P

- S contains no assertions

- modset(S) = { v1, v2, …, vn }

Program P’ – identical to P, but S replaced with:

modset(S): variables possibly modified by S

If P’ is incorrect then P may or may not be incorrect

havoc v1; havoc v2; …; havoc vn;

P’ over-approximates P

If P’ is correct then P is correct

havoc: an extreme 

form of over-

approximation – we 

will see less extreme 

forms
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Assume

assume e;
No-op if e is true

Blocks execution if e is false

Can be thought of as 

equivalent to:
while(!e) { }

Like havoc, only really makes sense in the context of 

program analysis

int x = 5;

assume(x == 4);

assert(x == 0);

int x = 5;

assume(x > 0);

assert(x == 0);// CORRECT! // INCORRECT!

Which assume statement unconditionally blocks execution?
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What’s the point of assume?

Allows us to under-approximate parts of programs

void foo(int y, int z) {

int x;

int t;

if(z < 0) return;

if(y > z)

t = y;

else

t = 2*x;

if(t > 0)

x = 0;

else

x = z;

assert(t != y);

}

void foo_constrained(int y, int z) {

int x;

int t;

if(z < 0) return;

if(y > z)

t = y;

else {

assume(false);

t = 2*x; }

if(t > 0)

x = 0;

else

x = z;

assert(t != y);

}

under-approximate

foo_constrained captures a subset of foo’s behaviours

foo_constrained incorrect => foo incorrect

Incorrect
Incorrect

implies
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Under-approximation: if, not iff

void foo(int y, int z) {

int x;

int t;

if(z < 0) return;

if(y > z)

t = y;

else

t = 2*x;

if(t > 0)

x = 0;

else

x = z;

assert(t != y);

}

void foo_constrained(int y, int z) {

int x;

int t;

if(z < 0) return;

assume(false);

if(y > z)

t = y;

else

t = 2*x;

if(t > 0)

x = 0;

else

x = z;

assert(t != y);

}

under-approximate

foo_constrained captures a subset of foo’s behaviours

We may have foo_constrained correct but foo incorrect

Correct
Incorrect
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Under-approximation using assume

Suppose program P contains statement S

Program P’ – identical to P, except S replaced with:

assume e; S

P’ under-approximates P

- If P’ is incorrect then P is incorrect

- If P’ is correct, P may or may not be correct
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P’ over-approximates P

Three possible scenarios:

P and P’ both correct

P and P’ both incorrect

P’ incorrect bug P correct

If we 

analyse P’ 

only, we 

cannot 

directly 

distinguish 

between 

these
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P’ under-approximates P

Three possible scenarios:

P and P’ both incorrect

P and P’ both correct

P’ correct but P incorrect
If we 

analyse P’ 

only, we  

cannot 

distinguish 

between 

these
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Usefulness of over- and under-approximations

Both can be used to simplify analysis

Over-approximation:

- may enable a proof of correctness

- adds program behaviours – may add bugs, leading to 

false positives

Under-approximation:

- may enable detection of bugs

- removes program behaviours – may remove genuine 

bugs, leading to false negatives
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Over-approximation using havoc and assume

Havoc is extreme – we can use assume to make it less so

void foo(int y, int z) {

int x;

int t;

if(z < 0) return;

if(y > z)

t = y;

else

t = 2*x;

if(t > 0)

x = 0;

else

x = z;

assert(x >= 0);

}

void foo_abstract(int y, int z) {

int x;

int t;

if(z < 0) return;

havoc t;

assume(t == y || t == 2*x);

if(t > 0)

x = 0;

else

x = z;

assert(x >= 0);

}

a.k.a. abstract

over-approximate

Captures the possible effects of the conditional

Loses relationship between value of t and condition y > z

Correct
Correct

implies
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Handling calls: inlining

int a, b, c;

//@ requires x > 0;

void foo(int x) {

a = 2;

b = bar(x);

assert(b >= 0);

}

//@ requires a > 0;

//@ requires y > 0;

//@ modifies c;

//@ ensures \result > 0;

int bar(int y) {

c = 0;

return a + y;

}

//@ requires x > 0;

void foo(int x) {

a = 2;

int y = x;

assert(a > 0);

assert(y > 0);

c = 0;

b = a + y;

assert(b > 0);

assert(b >= 0);

}

To verify foo, we could inline bar:

Check bar’s 

pre-condition

Check bar’s 

post-condition

Inlining: does not scale, cannot 

handle recursion

//@ requires/ensures/modifies: 

JML notation
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Handling calls: summarisation

int a, b, c;

//@ requires x > 0;

void foo(int x) {

a = 2;

b = bar(x);

assert(b >= 0);

}

//@ requires a > 0;

//@ requires y > 0;

//@ modifies c;

//@ ensures \result > 0;

int bar(int y) {

c = 0;

return a + y;

}

//@ requires x > 0;

void foo(int x) {

a = 2;

assert(a > 0);

assert(x > 0);

havoc c;

havoc b;

assert(b >= 0);

}

To verify foo, we replace bar 

with a summary:

Assert bar’s 

pre-condition

Havoc bar’s 

modset

Havoc receiving 

variable

Summary over-approximates bar

Summary of what bar did

…but the over-approximation is too coarse – false positive

Incorrect

Correct
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Improving summary using bar’s post-condition

int a, b, c;

//@ requires x > 0;

void foo(int x) {

a = 2;

b = bar(x);

assert(b >= 0);

}

//@ requires a > 0;

//@ requires y > 0;

//@ modifies c;

//@ ensures \result > 0;

int bar(int y) {

c = 0;

return a + y;

}

To verify foo, we replace bar 

with a summary:

Assert bar’s 

pre-condition

Havoc bar’s 

modset

Havoc receiving 

variable

Exploiting bar’s post-condition eliminates the false positive here

Summary of what bar did

Correct

Correct

//@ requires x > 0;

void foo(int x) {

a = 2;

assert(a > 0);

assert(x > 0);

havoc c;

havoc b;

assume(b > 0);

assert(b >= 0);

}

Assume bar’s  

post-condition

Works here, but not 

quite right in general –

see following slides
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assert(P[e1/p1, … , en/pn]);

havoc g1; ... ; havoc gm;

havoc v;

assume(Q[v / \result]);

Summarisation in general: first attempt

v = bar(e1, … , en);

//@ requires P;

//@ modifies g1, ... , gm;

//@ ensures Q;

int bar(int p1, ... , int pn);

Call statement:

Specification (a.k.a. contract) for bar:

Replace call with pre-condition assertion and summary:

Assert pre-condition

Havoc modset

Havoc receiving variable

Assume post-condition

Ally’s

This is not quite right
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Problem with first attempt

int c;

void foo(int x) {

c = bar();

assert(false);

}

void foo(int x) {

havoc c; // havoc receiving variable

assume( (\result != c)[c / \result] ); // assume post-condition

assert(false);

}

//@ ensures \result != c;

int bar() {

return c + 1;

}

void foo(int x) {

havoc c; // havoc receiving variable

assume(c != c); // !!!

assert(false);

}

Simplifies to:

Replacing bar with summary (according to previous slide) gives:

Consider:

Incorrect

Correct

So this is not

a sound over-

approximation
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Correct summarisation

v = bar(e1, … , en);
//@ requires P;

//@ modifies g1, ... , gm;

//@ ensures Q;

int bar(int p1, ... , int pn);

assert(P[e1/p1, … , en/pn]);

havoc g1; ... ; havoc gm;

havoc bar_ret;

assume(Q[bar_ret / \result]);

v = bar_ret;

Call statement:
Specification for bar:

Replace call with pre-condition assertion and summary:

Assert pre-condition

Havoc modset

Havoc return temp

Assume post-condition 

for return temp

Fix: Introduce fresh temporary variable, bar_ret, to capture 

post-condition of bar

Copy into receiving variable
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Soundness of summarisation

foo calls bar

bar’s summary over-approximates bar if bar is correct

If bar is not correct then it may be unsound to assume 

bar’s post-condition

Yes, as long as we also verify bar

Is this sound?

When verifying foo we replace bar by its summary

Result: modular verification only succeeds if we manage 

to verify all procedures

Note: coarse summarisation without assuming post-

condition is always OK (though not often useful)
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Exercise

Can you work out how to adapt summarisation to support 

post-conditions that use \old to refer to the values held by 

global variables on procedure entry?
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Modsets in real-world languages

Sound analysis depends on being able to compute 

modifies sets for procedures

Why is this easy in Simple C?

Why is it not at all easy in Java or C?
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Big picture

Given program with procedures and procedure calls, but 

no loops:

Use summarisation to over-approximate calls

Every procedure is now loop- and call-free

Apply techniques of last lecture for verification

Problem: how do we treat our new friends, havoc and 

assume, during SSA conversion?
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SSA conversion for havoc

• “havoc v” means: “forget everything about v”

• How do we do that during SSA conversion?

• Just give v a fresh SSA id

This is trivial

y = x + 1;

havoc x;

assert y == x + 1;

y1 = x0 + 1;

// increment x’s id

assert y1 == x1 + 1;
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SSA conversion for assume

• If an assume fails…

• …no assertion should be checked afterwards

Recall: “assume e” blocks execution unless e holds

Our goal in verification is to check assertions so:

We can account for this by tracking a set of global 

assumptions, and guarding assertions by these 

assumptions



29

SSA conversion for assume: example

if(a > b) {

x = 1;

assume y == 2;

} else {

x = 2;

assume y > 3;

}

assert y > x;

// guard: a0 > b0
x1 = 1;

// assumptions: (a0 > b0 ==> y0 == 2)

// guard: !(a0 > b0)

x2 = 2;

// assumptions: (a0 > b0 ==> y0 == 2)

//         && (!(a0 > b0) ==> y0 > 3)

x3 = (a0 > b0) ? x1 : x2;

assert (a0 > b0 ==> y0 == 2) &&

(!(a0 > b0) ==> y0 > 3)

==> y0 > x3;

The assert condition is 

guarded by the assumptions



30

Updated SSA conversion algorithm

We had:

toSSA(S, Pred, M)

We now have:

toSSA(S, Pred, Assumptions, M)

Assumptions is passed by reference: assumptions grow 

as we translate assume statements

Top-level statement S is converted by executing:

toSSA(S, true, true, init)

where init maps each variable to SSA id 0.
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Updated SSA conversion algorithm

toSSA(v = E, Pred, Assumptions, M) {

newId := fresh(v);

emit("vnewId = apply(E, M);");

M(v) := newId;

}

toSSA(assert E, Pred, Assumptions, M) {

emit("assert (Assumptions && Pred) ==> apply(E, M);");

}

toSSA(S; T, Pred, Assumptions, M) {

toSSA(S, Pred, Assumptions, M);

toSSA(T, Pred, Assumptions, M);

}

Only check the 

assertion if the current 

assumptions hold



32

SSA conversion algorithm

toSSA( if(E) { S } else { T } , Pred, Assumptions, M) {

NewPred := apply(E, M);

M’ := M.clone();

M’’ := M.clone();

toSSA(S, Pred && NewPred, Assumptions, M’);

// omit if else branch is empty

toSSA(T, Pred && !(NewPred), Assumptions, M’’); 

for(v : modset(S) ⋃ modset(T)) {

M(v) := fresh(v);

emit("vM(v) = NewPred ? vM’ (v) : vM’’ (v) ");

}

}
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Updated SSA conversion algorithm

toSSA(havoc v, Pred, Assumptions, M) {

M(v) := fresh(v);

}

toSSA(assume E, Pred, Assumptions, M) {

Assumptions := Assumptions && (Pred ==> apply(E, M));

}

Add the predicated 

assume condition as a 

new assumption

Recall that 

Assumptions is 

passed by reference

New cases for havoc and assume:
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Translating a loop-free procedure

int foo(…)

requires R1, …, requires Rm,

ensures E1, …, ensures En {

S;

return e;

} Suppose that 

specifications for all 

procedures called 

inside S are available
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Translating a loop-free procedure

int foo(…)

requires R1, …, requires Rm,

ensures E1, …, ensures En {

S;

return e;

}

First, rewrite:

• preconditions as 

assumes

• postconditions as 

asserts

assume R1; …

assume Rm,

S;

assert E1[e / \result]; …

assert En[e / \result];
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Translating a loop-free procedure

int foo(…)

requires R1, …, requires Rm,

ensures E1, …, ensures En {

S;

return e;

}

Next, replace S with 

summarise(S) –

apply summarisation 

to each call in S

assume R1; …

assume Rm,

S;

assert E1[e / \result]; …

assert En[e / \result];

assume R1; …

assume Rm,

summarise(S);

assert E1[e / \result]; …

assert En[e / \result];
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Translating a loop-free procedure

We now have a loop-

free, call-free program:

assume R1; …

assume Rm,

summarise(S);

assert E1[e / \result]; …

assert En[e / \result];

Apply SSA conversion, turn the program into a formula, 

and ask an SMT solver whether the formula is satisfiable

Formula unsat => original program is correct

Why => and not <=>?
Next: loops
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Simple procedure with loop

void foo(int x) {

int i;

i = 0;

while(i < x) {

i = i + 1;

}

assert(i == x);

}

Obviously (to a human) correct

?

Not for all values of x
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Simple procedure with loop

void foo(int x)

requires x > 0 {

int i;

i = 0;

while(i < x) {

i = i + 1;

}

assert(i == x);

}

Now it is correct.

How do we verify it?



40

Over-approximating loops: first attempt

First idea: replace loop with statements that havoc 

the loop body’s modset

Problems:

1. only sound if loop body does not contain assertions

2. leads to a very coarse over-approximation (too coarse here)

IncorrectCorrect

//@ requires x > 0;

void foo(int x) {

int i;

i = 0;

while(i < x) {

i = i + 1;

}

assert(i == x);

}

//@ requires x > 0;

void foo(int x) {

int i;

i = 0;

havoc i;

assert(i == x);

}



41

Over-approximating loops: first attempt

Illustration of problem (1)

Incorrect Correct

Havocking does not yield an over-approximation –

we miss bugs that occur in the loop body

void foo(int x) {

int i;

i = 0;

while(i <= x) {

assert(i < x);

i = i + 1;

}

}

void foo(int x) {

int i;

i = 0;

havoc i;

}
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Over-approximating loops: second attempt

Check an arbitrary loop iteration

This is sound: we get an over-approximation

However, havocking is very coarse

Teleport to arbitrary 

loop iteration

If loop guard holds, 

check the body 

behaves correctly

Block further loop 

execution

Check statements 

after the loop

Correct

Incorrect

//@ requires x > 0;

void foo(int x) {

int i;

i = 0;

while(i < x) {

assert(i < x);

i = i + 1;

}

assert(i == x);

}

//@ requires x > 0;

void foo(int x) {

int i;

i = 0;

havoc i;

if(i < x) {

assert(i < x);

i = i + 1;

assume(false);

}

assert(i == x);

}
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Over-approximating loops: third attempt
//@ requires x > 0;

void foo(int x) {

int i;

i = 0;

while(i < x)

invariant i <= x {

assert(i >= 0);

i = i + 1;

}

assert(i == x);

}

//@ requires x > 0;

void foo(int x) {

int i;

i = 0;

assert(i <= x);

havoc i;

assume(i <= x);

if(i < x) {

assert(i >= 0);

i = i + 1;

assert(i <= x);

assume(false);

}

assert(i == x);

}

Teleport to arbitrary 

loop iteration satisfying 

the invariant

If loop guard holds, check the 

body behaves correctly

Block further loop execution

Check statements 

after the loop

Establish that invariant 

holds on loop entry

…and that the loop invariant 

holds at the end of the body

- use invariant

Problem: invariant

i <= x is not strong 

enough to prove 

the assertion i >= 0

Exercise: why not?
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A stronger invariant allows 

verification to succeed

//@ requires x > 0;

void foo(int x) {

int i;

i = 0;

while(i < x)

invariant i <= x,

invariant i >= 0 {

assert(i >= 0);

i = i + 1;

}

assert(i == x);

}

//@ requires x > 0;

void foo(int x) {

int i;

i = 0;

assert(i <= x);

assert(i >= 0);

havoc i;

assume(i <= x);

assume(i >= 0);

if(i < x) {

assert(i >= 0);

i = i + 1;

assert(i <= x);

assert(i >= 0);

assume(false);

}

assert(i == x);

}

Thanks to a former student for 

pointing out that i <= x alone is 

not strong enough!

Strengthening the 

invariant to include 

also i >= 0 allows 

verification to succeed
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The power of a loop invariant

When checking code immediately after a loop we can 

assume that the loop invariant holds

We make this sound using induction:

Prove invariant holds on loop entry (base case)

Assume invariant holds for arbitrary iteration

(induction hypothesis)

Prove invariant holds at end of iteration (step 

case)

Can provide a much better summary of the loop than 

obtained by only havocking the modset
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Over-approximating loops: general case

S;

while(c)

invariant X {

B;

}

T;

S;

assert X;

havoc v1; … , havoc vn;

assume X;

if(c) {

B;

assert X;

assume false;

}

T;

Teleport to arbitrary 

loop iteration satisfying 

the invariant

If loop guard holds, check the 

body behaves correctly

Block further loop execution

Check statements 

after the loop

Establish that invariant 

holds on loop entry

…and that the loop invariant 

holds at the end of the body

Suppose modset(B) = { v1, …, vn }
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Static verification: complete story

Given set of procedures, specification for each procedure 

and invariant for every loop:

Replace each procedure call with summary 

according to callee’s specification

Every procedure is now loop- and call-free

Apply assume- and havoc-aware SSA conversion

Build verification condition formula

Replace each loop with summary according to 

loop’s invariant

Give it to SMT solver


