
Software Reliability

Lecture 2

Static Program Verification

Alastair Donaldson

www.doc.ic.ac.uk/~afd

2

Pre- and post-conditions

Pre-condition: fact that must hold on method entry – a

pre-condition is required by the method

Post-condition: fact that must hold on method return – a

correctly implemented method ensures its post-condition

Pre- and post-condition for method: collectively called

specification or contract for the method

3

Correctness

Correctness with respect to pre- and post-conditions

and assertions:

A method (function/procedure) with pre-condition P and

post-condition Q is correct if every execution starting in

a state which satisfies P

- does not violate any assertions, and

- either:

- does not terminate, or

- terminates in a state which satisfies Q

This is really partial correctness: total correctness

demands termination

We shall use correct to mean partially correct

4

Reminder of a couple of logic essentials

P => Q

- P implies Q

- If P holds then Q holds

- Many tools use notation P ==> Q

False implies everything!

- false => Q is always true

- false => (4 == 5) holds

True implied by everything

- P => true is always true

5

Logical formulae can denote sets

Suppose program has integer variables x and y

Formula (x > y) can be thought of as denoting the set of

all program states where x is bigger than y

Method pre-condition P: set of all program states from

which the method can be safely executed

Method post-condition Q: set of states that includes all

possible end states for the method

More generally, formula R denotes set of all program

states where R holds

6

Logical formulae can denote sets

Which formula denotes all program states?

true

Which formula denotes the empty set?

false

What does => correspond to in set theory?

7

Aim of Static Program Verification

Given a set of procedures, each with a specification (pre-

and post-condition), show that every procedure is correct

Correct means:

If pre-condition holds then

- no assertions fail

- post-condition holds on procedure return

In Hoare’s notation we write:

{P} C {Q}

for a procedure with pre-condition P, post-condition Q and

body C

8

Simple C

We’ll present static verification using a simple C-like

language:

- Only type is (signed) int

- Only simple control flow (if, while)

- Only pure, immediate operators (no ++, +=, no short-

circuit evaluation)

- etc.

Allows us to focus on verification techniques without

getting bogged down in language details

Full-blown verifiers must (and to some extent do!) deal

with complexities such as pointers and function pointers

9

Static program verification: top-level

approach

Turn program P into a logical formula φ such that:

- If φ is unsatisfiable, P is correct

- If φ is satisfiable, P may be incorrect

For loop-free programs, we will proceed as follows:

1) Turn P into predicated static single assignment

(SSA) form P’

2) Build a formula φ encoding buggy paths through P’

3) Use an SMT solver to analyse φ, to prove whether a

buggy path exists

10

SSA form: example

x = y + 1;

x = x + 1;

y = y + 1;

assert x == y + 1;

assert x > y;

x1 = y0 + 1;

x2 = x1 + 1;

y1 = y0 + 1;

assert x2 == y1 + 1;

assert x2 > y1;

is

expressed

as:

In SSA form, every variable is assigned to once:

For code without conditionals and loops, this SSA renaming

process is straightforward:

• increment the SSA id of a variable each time it is defined

(assigned to)

• select the latest SSA id of a variable each time it is used

SSA renaming clearly preserves program correctness

11

Checking correctness of an SSA program

(x1 == y0 + 1) && (x2 == x1 + 1) && (y1 == y0 + 1)

&&

!((x2 == y1 + 1) && (x2 > y1))

Correctness conditions for SSA form program can be

encoded as a set of constraints:

x1 = y0 + 1;

x2 = x1 + 1;

y1 = y0 + 1;

assert x2 == y1 + 1;

assert x2 > y1;

x = y + 1;

x = x + 1;

y = y + 1;

assert x == y + 1;

assert x > y;

12

Checking correctness of an SSA program

Constraints satisfiable <=> there exist values for x1, x2, y0, y1
that:

• satisfy the relationships between variables enforced by

assignments

• cause at least one assertion to fail

(x1 == y0 + 1) && (x2 == x1 + 1) && (y1 == y0 + 1)

&&

!((x2 == y1 + 1) && (x2 > y1))

x1 = y0 + 1;

x2 = x1 + 1;

y1 = y0 + 1;

assert x2 == y1 + 1;

assert x2 > y1;

x = y + 1;

x = x + 1;

y = y + 1;

assert x == y + 1;

assert x > y;

P correct <=> constraints are unsat

13

Solving the formula

Automated verification tools rely on a:

theorem prover / constraint solver / SMT solver

to solve formulas

Formula to be checked is called a verification condition

(VC) or proof obligation

VC (or proof obligation) is discharged by a solver

names used pretty

much interchangeably

14

Satisfiability Modulo Theories (SMT) in a slide

An SMT solver can decide whether a formula is satisfiable,

where the formula is expressed using one or more theories

Common theories

- Integers (a.k.a. mathematical integers)

- Bit vectors (a.k.a. machine integers)

- Reals (and recent floating point support)

- Arrays

Common logic + theory combinations
- QF_BV: quantifier-free formulae over bit-vectors

- QF_LIA: quantifier-free linear integer arithmetic formulae

(boolean combinations of inequalities between linear

polynomials over integer variables)

Successful solvers include Z3, CVC4, MathSAT, Boolector

Annual competition, SMT-COMP, drives progress!

Standard input

language: SMT-LIB 2

15

Coding our formula in SMT-LIB 2

(x1 == y0 + 1) &&

(x2 == x1 + 1) &&

(y1 == y0 + 1)

!((x2 == y1 + 1) &&

(x2 > y1))
&&

(set-logic QF_LIA)

(declare-fun x1 () Int)

(declare-fun x2 () Int)

(declare-fun y0 () Int)

(declare-fun y1 () Int)

(assert (= x1 (+ y0 1)))

(assert (= x2 (+ x1 1)))

(assert (= y1 (+ y0 1)))

(assert (not (and

(= x2 (+ y1 1))

(> x2 y1)

)))

(check-sat)Note different meaning of

assert: we are asserting

facts to the solver Result: unsat

16

Points from the example

(set-logic QF_LIA)

(declare-fun x1 () Int)

(assert (= x1 (+ y0 1)))

(check-sat)

Specify which logic to use (quantifier-

free linear integer arithmetic)

Declare a symbolic constant of type

Int: a nullary (0-argument) function

Tell the solver a fact

Expressions are written in prefix

form (operator then operands)

Tell the solver to check

satisfiability

Called S-expressions

(from Lisp)

17

Using bitvectors instead of mathematical

integers

(x1 == y0 + 1) &&

(x2 == x1 + 1) &&

(y1 == y0 + 1)

!((x2 == y1 + 1) &&

(x2 > y1))
&&

(set-logic QF_BV)

(declare-fun x1 () (_ BitVec 32))

(declare-fun x2 () (_ BitVec 32))

(declare-fun y0 () (_ BitVec 32))

(declare-fun y1 () (_ BitVec 32))

(assert (= x1 (bvadd y0 (_ bv1 32))))

(assert (= x2 (bvadd x1 (_ bv1 32))))

(assert (= y1 (bvadd y0 (_ bv1 32))))

(assert (not (and

(= x2 (bvadd y1 (_ bv1 32)))

(bvsgt x2 y1)

)))

(check-sat)

Result: sat

SMT type for n-bit

bitvector:
(_ BitVec n)

SMT syntax for m

as n-bit bitvector:
(_ bvm n)

18

Getting a value from the solver

If solver says sat, we can ask the solver for values for

individual variables. E.g., if we ask:

(get-value (y0))

the solver says:

((y0 #x7ffffffe))

Think why the program is incorrect for this value of y0

19

Try Z3

To experiment with SMT-LIB 2, do:

z3 -smt2 -file query.txt

Z3 is packaged with the given files for Part 1 of the

coursework

20

Our story so far, for programs without

conditionals

Turn program into SSA form. Program then consists of a

mixture of:

• Assignments: v1 = d1, v2 = d2, …, vm = dm

• Assertions: assert e1, assert e2, …, assert en

Program is correct if and only if this formula is unsatisfiable:

(v1 == d1 && v2 == d2 && … && vm == dm)

&&

!(e1 && e2 && … && en)

We can use an SMT solver to check this

Next: handling conditionals

21

SSA form for conditionals: example 1

x = y;

if(x > z) {

x = x + 1;

y = y + 1;

} else {

x = x + y;

}

x1 = y0;

// guard: x1 > z0
x2 = x1 + 1;

y1 = y0 + 1;

// guard: !(x1 > z0)

x3 = x1 + y0; // reads values of x and

// before conditional

x4 = (x1 > z0) ? x2 : x3;

y2 = (x1 > z0) ? y1 : y0;

Method:

• turn then and else branches into SSA separately

• use different IDs for new variables

• resolve branches after conditional: updated variables take

values depending on the conditional guard

22

SSA form for conditionals: example 2

x = y;

if(x > z) {

if(z > y) {

x = x + 1;

y = y + 1;

} else {

z = 3;

}

z = 2;

} else {

x = x + y;

}

x1 = y0;

// guard: x1 > z0
// guard: z0 > y0
x2 = x1 + 1;

y1 = y0 + 1;

// guard: !(z0 > y0)

z1 = 3;

x3 = (z0 > y0) ? x2 : x1;

y2 = (z0 > y0) ? y1 : y0;

z2 = (z0 > y0) ? z0 : z1;

z3 = 2;

// guard: !(x1 > z0)

x4 = x1 + y0;

x5 = (x1 > z0) ? x3 : x4;

y3 = (x1 > z0) ? y2 : y0;

z4 = (x1 > z0) ? z3 : z0;

Nested conditionals: need to resolve branches multiple times

23

SSA form for conditionals: example 3

x = y;

if(x > z) {

x = x + 1;

assert x > y;

y = y + 1;

} else {

x = x + y;

assert x != y;

}

x1 = y0;

// guard: x1 > z0
x2 = x1 + 1;

assert x1 > z0 ==> x2 > y0;

y1 = y0 + 1;

// guard: !(x1 > z0)

x3 = x1 + y0;

assert !(x1 > z0) ==> x3 != y0;

x4 = (x1 > z0) ? x2 : x3;

y2 = (x1 > z0) ? y1 : y0;

Assert statements must be predicated by guards of

all enclosing conditional branches

Next: informed by these examples, we’ll see an

algorithm for SSA conversion

24

SSA conversion algorithm: notation

Let M be a mapping from variables to SSA ids

For an expression E, let apply(E, M) be the expression

identical to E, but with each variable v replaced with vM(v)

Let M(v) denote the SSA id to which v is mapped

Then:

M(x) = 2, M(y) = 3, M(z) = 4

apply(x+y/(x+z), M) = x2+y3/(x2+z4)

Example: suppose M = { x ↦ 2, y ↦ 3, z ↦ 4 }

We write:

M(v) := id;

to update the mapping for v to id

25

SSA conversion algorithm: notation

Procedure fresh(v) returns an SSA id for a variable. The

same id is never returned for the same variable twice

modset(S) returns variables that are possibly modified by

statement S:
• modset(v = E) = { v }

• modset(assert E) = { }

• modset(S; T) = modset(S) ⋃ modset(T)

• modset(if(E){S} else {T}) = modset(S) ⋃modset(T)

If M is an SSA mapping, M.clone() returns a duplicate of M

26

SSA conversion algorithm

We will describe the algorithm as a recursive procedure:

toSSA(Stmt, Pred, M)

where:

• Stmt is a program statement

• Pred is a Boolean predicate

• M is an SSA mapping, and is passed by reference

Top-level statement S is converted by executing:

toSSA(S, true, init)

where init maps each variable to SSA id 0.

Code is generated by procedure emit(s), where s is a

string

27

SSA conversion algorithm

toSSA(v = E, Pred, M) {

newId := fresh(v);

emit("vnewId = apply(E, M);");

M(v) := newId;

}

toSSA(assert E, Pred, M) {

emit("assert Pred ==> apply(E, M);");

}

toSSA(S; T, Pred, M) {

toSSA(S, Pred, M); // recall that M is passed

toSSA(T, Pred, M); // by reference

}

28

SSA conversion algorithm

toSSA(if(E) { S } else { T } , Pred, M) {

NewPred := apply(E, M);

M’ := M.clone();

M’’ := M.clone();

toSSA(S, Pred && NewPred, M’);

toSSA(T, Pred && !(NewPred), M’’); // omit if else

// branch is empty

for(v : modset(S) ⋃ modset(T)) {

M(v) := fresh(v);

emit("vM(v) = NewPred ? vM’ (v) : vM’’ (v) ");

}

}

29

A simple example

int getXOrZero(int x)

requires x != 5,

ensures \result >= 0,

ensures \result != 5

{

int z;

if(x < 0) {

z = 0;

} else {

assert(z != -1);

z = x;

}

return z;

}

// Initially, values of

// x, y z are arbitrary

if(x != 5) {

if(x < 0) {

z = 0;

} else {

assert(z != -1);

z = x;

}

assert z >= 0,

assert z != 5;

}

For purposes of

verification, equivalent to:

Try turning this program

into SSA form using

toSSA

30

Expected result

Assuming that fresh(v) has the effect of incrementing

SSA ids, we end up with:

z1 = 0;

assert(x0 != 5 && !(x0 < 0) ==> z0 != -1);

z2 = x0;

z3 = x0 < 0 ? z1 : z2;

assert(x0 != 5 ==> z3 >= 0);

assert(x0 != 5 ==> z3 != 5);

z4 = x0 != 5 ? z3 : z0;

(z1 == 0) && (z2 == x0) &&

(z3 == x0 < 0 ? z1 : z2) && (z4 == x0 != 5 ? z3 : z0)

&&

!((x0 != 5 && !(x0 < 0) ==> z0 != -1) &&

(x0 != 5 ==> z3 >= 0) &&

(x0 != 5 ==> z3 != 5))

We can turn this into a formula

31

Expected result

In SMT, with bitvectors, the formula translates to:
(set-logic QF_BV)

(declare-fun z0 () (_ BitVec 32))

(declare-fun z1 () (_ BitVec 32))

(declare-fun z2 () (_ BitVec 32))

(declare-fun z3 () (_ BitVec 32))

(declare-fun z4 () (_ BitVec 32))

(declare-fun x0 () (_ BitVec 32))

(assert (= z1 (_ bv0 32)))

(assert (= z2 x0))

(assert (= z3 (ite (bvslt x0 (_ bv0 32)) z1 z2)))

(assert (= z4 (ite (not (= x0 (_ bv5 32))) z3 z0)))

(assert (not (and

(=> (and (not (= x0 (_ bv5 32)))

(not (bvslt x0 (_ bv0 32)))) (not (= z0 (bvneg (_ bv1 32)))))

(=> (not (= x0 (_ bv5 32))) (bvsge z3 (_ bv0 32)))

(=> (not (= x0 (_ bv5 32))) (not (= z3 (_ bv5 32))))

)))

(check-sat)

Use (get-value (x0 z0))

to find inputs that make the

program fail

32

Summary

To verify a loop-free, call-free piece of code:

 Transform to static single assignment (SSA) form

 In SSA form each variable is assigned once

 Conditionals are handled during SSA conversion using

predication

 From SSA form we can turn the program into a set of

constraints

 Constraints are unsat <=> program is correct

 Satisfiability can be checked by an SMT solver

 Constraints are described using SMT-LIB2 format

 Z3 is a state-of-the-art SMT solver

