Software Reliability

Lecture 2

Static Program Verification

Alastair Donaldson
www.doc.ic.ac.uk/~afd

Pre- and post-conditions

Pre-condition: fact that must hold on method entry - a pre-condition is required by the method

Post-condition: fact that must hold on method return - a correctly implemented method ensures its post-condition

Pre- and post-condition for method: collectively called specification or contract for the method

Correctness

Correctness with respect to pre- and post-conditions and assertions:

A method (function/procedure) with pre-condition \mathbf{P} and post-condition \mathbf{Q} is correct if every execution starting in a state which satisfies \mathbf{P}

- does not violate any assertions, and
- either:
- does not terminate, or
- terminates in a state which satisfies \mathbf{Q}

This is really partial correctness: total correctness demands termination

We shall use correct to mean partially correct

Reminder of a couple of logic essentials

$\mathbf{P}=\mathbf{Q}$

- Pimplies Q
- If \mathbf{P} holds then \mathbf{Q} holds
- Many tools use notation $\mathbf{P}==>\mathbf{Q}$

False implies everything!

- false => Q is always true
- false => (4 == 5) holds

True implied by everything

- $\mathbf{P}=>$ true is always true

Logical formulae can denote sets

Suppose program has integer variables \mathbf{x} and \mathbf{y}
Formula ($\mathbf{x}>\mathbf{y}$) can be thought of as denoting the set of all program states where \mathbf{x} is bigger than \mathbf{y}

More generally, formula \mathbf{R} denotes set of all program states where \mathbf{R} holds

Method pre-condition P: set of all program states from which the method can be safely executed
Method post-condition Q: set of states that includes all possible end states for the method

Logical formulae can denote sets

Which formula denotes all program states?

true

Which formula denotes the empty set?

false

What does => correspond to in set theory?

Aim of Static Program Verification

Given a set of procedures, each with a specification (preand post-condition), show that every procedure is correct

Correct means:
If pre-condition holds then

- no assertions fail
- post-condition holds on procedure return

In Hoare's notation we write:
\{P\} C $\{\mathbf{Q}\}$
for a procedure with pre-condition \mathbf{P}, post-condition \mathbf{Q} and body C

Simple C

We'll present static verification using a simple C-like language:

- Only type is (signed) int
- Only simple control flow (if, while)
- Only pure, immediate operators (no ++, +=, no shortcircuit evaluation)
- etc.

Allows us to focus on verification techniques without getting bogged down in language details

Full-blown verifiers must (and to some extent do!) deal with complexities such as pointers and function pointers

Static program verification: top-level approach

Turn program \mathbf{P} into a logical formula $\boldsymbol{\varphi}$ such that:

- If $\boldsymbol{\varphi}$ is unsatisfiable, P is correct
- If $\boldsymbol{\varphi}$ is satisfiable, P may be incorrect

For loop-free programs, we will proceed as follows:

1) Turn \mathbf{P} into predicated static single assignment (SSA) form P^{\prime}
2) Build a formula $\boldsymbol{\varphi}$ encoding buggy paths through \mathbf{P}^{\prime}
3) Use an SMT solver to analyse $\boldsymbol{\varphi}$, to prove whether a buggy path exists

SSA form: example

In SSA form, every variable is assigned to once:

```
lumey+1; 
assert x == y + 1; as:
assert x > y;
```

```
x
\mp@subsup{x}{2}{}}=\mp@subsup{\mathbf{x}}{1}{}+1
y}=\mp@subsup{y}{0}{}+1
assert }\mp@subsup{x}{2}{\prime== Y Y + 1;
assert }\mp@subsup{\textrm{X}}{2}{}>\mp@subsup{Y}{1}{}
```

For code without conditionals and loops, this SSA renaming process is straightforward:

- increment the SSA id of a variable each time it is defined (assigned to)
- select the latest SSA id of a variable each time it is used SSA renaming clearly preserves program correctness

Checking correctness of an SSA program

Correctness conditions for SSA form program can be encoded as a set of constraints:

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{x}=\mathrm{y}+1 ; \\
\mathrm{x}=\mathrm{x}+1 ; \\
\mathrm{y}=\mathrm{y}+1 ; \\
\text { assert } \mathrm{x}=\mathrm{y}+1 ; \\
\text { assert } \mathrm{x}>\mathrm{y} ;
\end{array} \\
& \begin{array}{l}
\mathbf{x}_{1}=y_{0}+1 ; \\
\mathbf{x}_{2}=\mathbf{x}_{1}+1 ; \\
\mathbf{y}_{1}=\mathrm{y}_{0}+1 ;
\end{array} \\
& \text { assert } X_{2}=y_{1}+1 \text {; } \\
& \text { assert } \mathrm{X}_{2}>\mathrm{Y}_{1} \text {; } \\
& \begin{array}{c}
\left(x_{1}==y_{0}+1\right) \& \&\left(x_{2}==\begin{array}{l}
\left.x_{1}+1\right) \& \&\left(y_{1}==y_{0}+1\right) \\
\quad!\left(\left(x_{2}==y_{1}+1\right) \& \&\left(x_{2}>y_{1}\right)\right)
\end{array}\right.
\end{array}
\end{aligned}
$$

Checking correctness of an SSA program

$$
\begin{aligned}
& \begin{array}{c}
\left(x_{1}==y_{0}+1\right) \& \&\left(x_{2}==x_{1}+1\right) \& \&\left(y_{1}==y_{0}+1\right) \\
!\left(\left(x_{2}==y_{1}+1\right) \& \&\left(x_{2}>y_{1}\right)\right)
\end{array}
\end{aligned}
$$

Constraints satisfiable $<=>$ there exist values for $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{0}, \mathbf{y}_{1}$ that:

- satisfy the relationships between variables enforced by assignments
- cause at least one assertion to fail

P correct <=> constraints are unsat

Solving the formula

Automated verification tools rely on a:

Formula to be checked is called a verification condition (VC) or proof obligation

VC (or proof obligation) is discharged by a solver

Satisfiability Modulo Theories (SMT) in a slide

An SMT solver can decide whether a formula is satisfiable, where the formula is expressed using one or more theories
Common theories

- Integers (a.k.a. mathematical integers)
- Bit vectors (a.k.a. machine integers)
- Reals (and recent floating point support)
- Arrays

Standard input language: SMT-LIB 2

Common logic + theory combinations

- QF_BV: quantifier-free formulae over bit-vectors
- QF_LIA: quantifier-free linear integer arithmetic formulae (boolean combinations of inequalities between linear polynomials over integer variables)

Successful solvers include Z3, CVC4, MathSAT, Boolector Annual competition, SMT-COMP, drives progress!

Coding our formula in SMT-LIB 2

Note different meaning of assert: we are asserting facts to the solver
(check-sat)
Result: unsat

Points from the example

Called S-expressions (from Lisp)

```
(set-logic QF_LIA)
```

\qquad

``` Specify which logic to use (quantifierfree linear integer arithmetic)
Declare a symbolic constant of type Int: a nullary (0-argument) function
(assert (= x1 (+ y0 1))) ------------- Tell the solver a fact
Expressions are written in prefix form (operator then operands)
```

Tell the solver to check satisfiability

Using bitvectors instead of mathematical integers

SMT type for n-bit bitvector:
(_BitVec n)
(check-sat)
Result: sat

SMT syntax for m as n-bit bitvector:
(_ bvm n)

Getting a value from the solver

If solver says sat, we can ask the solver for values for individual variables. E.g., if we ask:
(get-value (y0))
the solver says:
((y0 \#x7ffffffe))

Think why the program is incorrect for this value of y_{0}

Try Z3

Z3 is packaged with the given files for Part 1 of the coursework

To experiment with SMT-LIB 2, do:
z3 -smt2 -file query.txt

Our story so far, for programs without conditionals

Turn program into SSA form. Program then consists of a mixture of:

- Assignments: $v_{1}=d_{1}, v_{2}=d_{2}, \ldots, v_{m}=d_{m}$
- Assertions: assert e_{1}, assert e_{2}, \ldots, assert e_{n}

Program is correct if and only if this formula is unsatisfiable:

$$
\begin{gathered}
\left(v_{1}=d_{1} \& \& v_{2}=d_{2} \& \& \ldots \& \& v_{m}==d_{m}\right) \\
!\left(e_{1} \& \& e_{2} \& \& \ldots \& \& e_{n}\right)
\end{gathered}
$$

We can use an SMT solver to check this
Next: handling conditionals

SSA form for conditionals: example 1

Method:

- turn then and else branches into SSA separately
- use different IDs for new variables
- resolve branches after conditional: updated variables take values depending on the conditional guard

SSA form for conditionals: example 2

Nested conditionals: need to resolve branches multiple times

SSA form for conditionals: example 3

Assert statements must be predicated by guards of all enclosing conditional branches

```
x = y; -------------->}\mp@subsup{\mathbf{x}}{1}{\prime}=\mp@subsup{y}{0}{\prime
if(x > z) { // guard: }\mp@subsup{x}{1}{}>\mp@subsup{z}{0}{
    x = x + 1; ;-\cdots 
    assert x > y;-\cdots-assert }\mp@subsup{x}{1}{}>\mp@subsup{z}{0}{}==> \mp@subsup{x}{2}{}>\mp@subsup{y}{0}{\prime
    y = y + 1; ----- Y Y = y + 1;
} else { // guard: ! (x 
    x = x + y;----- m
```



```
}
\[
\begin{aligned}
& \mathbf{x}_{4}=\left(\mathbf{x}_{1}>\mathbf{z}_{0}\right) \quad ? \mathbf{x}_{2}: \mathbf{x}_{3} ; \\
& \mathbf{y}_{2}=\left(\mathbf{x}_{1}>\mathbf{z}_{0}\right) \quad ? \mathbf{y}_{1}: \mathbf{y}_{0}
\end{aligned}
\]
```

Next: informed by these examples, we'll see an algorithm for SSA conversion

SSA conversion algorithm: notation

Let M be a mapping from variables to SSA ids
Let $M(v)$ denote the SSA id to which v is mapped
For an expression E, let apply (E, M) be the expression identical to E, but with each variable v replaced with $v_{M(v)}$
Example: suppose $M=\{\mathbf{x} \mapsto 2, \mathbf{y} \mapsto 3, \mathbf{z} \mapsto 4\}$
Then:

$$
\begin{aligned}
& M(\mathbf{x})=2, M(\mathbf{y})=3, M(\mathbf{z})=4 \\
& \operatorname{apply}(\mathbf{x}+\mathbf{y} /(\mathbf{x}+\mathbf{z}), M)=\mathbf{x}_{2}+\mathbf{y}_{3} /\left(\mathbf{x}_{2}+\mathbf{z}_{4}\right)
\end{aligned}
$$

We write:

$$
M(v):=i d ;
$$

to update the mapping for v to id

SSA conversion algorithm: notation

Procedure fresh(v) returns an SSA id for a variable. The same id is never returned for the same variable twice

If M is an SSA mapping, M.clone() returns a duplicate of M
$\operatorname{modset}(S)$ returns variables that are possibly modified by statement S :

- $\operatorname{modset}(v=E)=\{v\}$
- modset(assert $E)=\{ \}$
- $\operatorname{modset}(S ; T)=\operatorname{modset}(S) \cup \operatorname{modset}(T)$
- $\operatorname{modset}(i f(E)\{S\}$ else $\{T\})=\operatorname{modset}(S) \operatorname{umodset}(T)$

SSA conversion algorithm

We will describe the algorithm as a recursive procedure: toSSA(Stmt, Pred, M)
where:

- Stmt is a program statement
- Pred is a Boolean predicate
- M is an SSA mapping, and is passed by reference

Top-level statement S is converted by executing:
toSSA(S, true, init)
where init maps each variable to SSA id 0 .
Code is generated by procedure emit(s), where s is a string

SSA conversion algorithm

```
toSSA(v=E, Pred, M) {
    newld := fresh(v);
    emit(" v vewld = apply(E,M);");
    M(v) := newld;
}
```

toSSA(assert E, Pred, M) \{ emit("assert Pred ==> apply(E, M) ;");
\}
toSSA(S; T, Pred, M) \{
toSSA(S, Pred, M); // recall that M is passed toSSA(T, Pred, M); // by reference

SSA conversion algorithm

toSSA(if (E) $\{S$ \} else $\{T\}$, Pred, M) $\{$
NewPred := apply(E, M);
M^{\prime} := M.clone();
$M^{\prime \prime}:=$ M.clone();
toSSA(S, Pred \& \& NewPred, M);
toSSA(T, Pred $\left.\& \&!(N e w P r e d), M^{\prime}\right) ; / /$ omit if else
// branch is empty
for $(v: \operatorname{modset}(S) \cup \operatorname{modset}(T))\{$

$$
\begin{aligned}
& M(v):=\operatorname{fresh}(v) ; \\
& \text { emit }\left(" v_{M(v)}=\text { NewPred } ? v_{M^{\prime}(v)}: v_{M^{\prime \prime}(v)}\right) \text {; }
\end{aligned}
$$

\}

A simple example

```
int getXOrZero(int x)
    requires x != 5,
    ensures \result >= 0,
    ensures \result != 5
{
        int z;
        if(x < 0) {
            z = 0;
        } else {
            assert(z != -1);
            z = x;
        }
        return z;
}
```

Try turning this program into SSA form using toSSA

For purposes of verification, equivalent to:

```
// Initially, values of
// x, y z are arbitrary
if(x != 5) {
    if(x<0) {
            z = 0;
    } else {
            assert(z != -1);
            z = x;
    }
    assert z >= 0,
    assert z != 5;
}
```


Expected result

Assuming that fresh(v) has the effect of incrementing SSA ids, we end up with:

$$
\begin{aligned}
& z_{1}=0 ; \\
& \text { assert }\left(x_{0}!=5 \& \&!\left(x_{0}<0\right)==>z_{0}!=-1\right) ; \\
& z_{2}=x_{0} ; \\
& z_{3}=x_{0}<0 ? z_{1}: z_{2} ; \\
& \operatorname{assert}\left(x_{0}!=5==>z_{3}>=0\right) ; \\
& \operatorname{assert}\left(x_{0}!=5==>z_{3}!=5\right) ; \\
& z_{4}=x_{0}!=5 ? z_{3}: z_{0} ;
\end{aligned}
$$

We can turn this into a formula

$$
\begin{aligned}
& \left(z_{1}=0\right) \& \&\left(z_{2}==x_{0}\right) \& \& \\
& \left(z_{3}==x_{0}<0 \quad ? z_{1}: z_{2}\right) \& \&\left(z_{4}==x_{0}!=5 \quad z_{3}: z_{0}\right) \\
& !\left(\left(x_{0}!=5 \& \&!\left(x_{0}<0\right)==>z_{0}!=-1\right) \& \&\right. \\
& \left(x_{0}!=5==>z_{3}>=0\right) \& \& \\
& \left.\quad\left(x_{0}!=5==>z_{3}!=5\right)\right)
\end{aligned}
$$

Expected result

In SMT, with bitvectors, the formula translates to:

```
(set-logic QF_BV)
(declare-fun z0 () (_ BitVec 32))
(declare-fun z1 () (_ BitVec 32))
(declare-fun z2 () (_ BitVec 32))
(declare-fun z3 () (_ BitVec 32))
(declare-fun z4 () (_ BitVec 32))
(declare-fun x0 () (_ BitVec 32))
Use (get-value (x0 z0))
to find inputs that make the
program fail
(assert (= z1 (_ bv0 32)))
(assert (= z2 x0))
(assert (= z3 (ite (bvslt x0 (_ bv0 32)) z1 z2)))
(assert (= z4 (ite (not (= x0 (_ bv5 32))) z3 z0)))
(assert (not (and
    (=> (and (not (= x0 (_ bv5 32)))
                            (not (bvslt x0 (_ bv0 32)))) (not (= z0 (bvneg (_bv1 32)))))
    (=> (not (= x0 (_ bv5 32))) (bvsge z3 (_ bv0 32)))
    (=> (not (= x0 (_ bv5 32))) (not (= z3 (_ bv5 32))))
)))
(check-sat)
```


Summary

To verify a loop-free, call-free piece of code:

- Transform to static single assignment (SSA) form
- In SSA form each variable is assigned once
- Conditionals are handled during SSA conversion using predication
- From SSA form we can turn the program into a set of constraints
- Constraints are unsat <=> program is correct
- Satisfiability can be checked by an SMT solver
- Constraints are described using SMT-LIB2 format
- Z3 is a state-of-the-art SMT solver

