
Software Reliability

Lecture 1

Introduction

Cristian Cadar & Alastair Donaldson

http://multicore.doc.ic.ac.uk/SoftwareReliability/

2

Team

Lecturers:

 Cristian Cadar

• c.cadar@imperial.ac.uk

• https://www.doc.ic.ac.uk/~cristic

 Alastair Donaldson

• a.donaldson@imperial.ac.uk

• https://www.doc.ic.ac.uk/~afd

Course Support Leader:

 Luis Pina

• l.pina@imperial.ac.uk

• https://www.luispina.me

3

Schedule

 27 slots

• 19 lectures

• 5 tutorials

• 1 tool demo

• 1 coursework discussion

• 1 guest lecture

4

Recording

We plan to record most lectures and make them available

online

In the past this mainly, but not always, worked

Don’t rely on the lecture recordings: treat them as a bonus

5

Defects in software systems

http://www.devtopics.com/20-famous-software-disasters/

Most software problems caused by programmer errors that

could be avoided through better testing and verification

- Therac-25 radiation therapy machine led to massive

radiation overdoses. Many root causes, including

arithmetic overflow & concurrency race conditions

- Ariane 5 test flight: error caused by data conversion

from 64-bit floating point value to 16-bit signed integer

value led to self-destruction

- Microsoft Zune termination bug: infinite loop during

date calculation – caused all devices to hang

simultaneously! http://techcrunch.com/2008/12/31/

zune-bug-explained-in-detail/

Famous examples include:

6

Widely used approaches for improving

software reliability

Manual testing: programmers construct test cases, either

to achieve high coverage, or in response to known bugs

Coding standards, code review: developers conform to

a set of coding standards, commits are subject to code

review by colleagues. E.g.:
- Joint Strike Fighter coding standards:

http://www.stroustrup.com/JSF-AV-rules.pdf

- LLVM coding standards:

http://llvm.org/docs/CodingStandards.html

Debuggers (gdb), memory analysers (Valgrind),

refactoring aids (Eclipse), testing frameworks

(JUnit), bug trackers (Bugzilla)

Tool support:

7

Limitations of manual testing

No guarantees. A successful test exposes a bug, and

can help ensure the bug does not return. No amount of

testing guarantees that a system is free from defects

High manual effort. Writing tests to achieve high

coverage is time consuming (thus expensive)

Limitations of human thought. Human testers do not

tend to spot intricate, unusual input combinations that

may lead to failure

8

Course focus: beyond manual testing

We will study:

Verification techniques, which aim to prove

program correctness

Bug-hunting methods, which aim to reveal

defects and generate corresponding tests

Two general methods:

Static analysis, which analyses the source

code without running the program

Dynamic analysis, which analyses running

programs

9

Changes based on SOLE

 Reduction in intensity of coursework

 Introduction of KLEE tool demo

 Course Support Leader (Luis) to help with tutorial

sessions

10

Topics

Verification condition generation

Procedure summaries

Bounded model checking

Dynamic symbolic execution

Constraint solving

Invariant generation

Systematic testing for concurrent programs

The lockset algorithm

Undefined behaviour, compiler bugs and unstable code

Intro to security and stack canaries

Safe C compilers

Control-flow, data-flow and write integrity

Underpinning many of these

techniques: SMT solvers

11

Reading research papers

Software reliability: an extremely active research area

Techniques we will cover are relatively new, still being

actively investigated

No textbooks covering all the course topics

We recommend reading all research papers underlying

the course

• The content of three papers is directly examinable

• Paper information posted on the course website as the

course progresses

12

Examination

Written exam (67%)

- Answer 2 of 3 questions

- Exam questions draw on material from lectures,

tutorial sheets, practical assignment and

examinable papers

Coursework (33%)

- The coursework is one large assignment, building

a program verifier

- Split into Part 1 (5%) and Part 2 (28%) to help you

manage your time

13

Coursework

Your task is to implement a program verifier for Simple C, a

C-like programming language

Part 1: build a verifier for loop-free, call-free programs.

Deadline: 28 October

Part 2: build a full-fledged verifier for multi-procedure

programs with loops and calls.

Deadline: 25 November

Coursework: undertaken in groups of up to 3

Deadline for group formation: noon on 19 October

Warning: coursework intensive!

14

Should I take the course?

Software Reliability is a high workload course:

• The coursework is demanding, requiring a lot of

technical programming; it will be time-consuming

• The three research papers are lengthy and technical,

and we recommend reading additional papers

We’ll be delighted if lots of you take the course, but it is

not an easy option

15

Any questions on the course structure?

Details and updates on the course web pages:

http://multicore.doc.ic.ac.uk/SoftwareReliability/

Preliminaries

 Bugs and correctness

 General vs. functional properties

 Safety (and liveness) properties

 Static and dynamic analysis

 False positives and false negatives

17

Bugs in Software

Out-of-bounds array

access

Invalid dynamic cast

Division or modulo by zero

Double free

Access after free

Null pointer

dereference
Assertion failure

Incorrect algorithm

Mistake in

implementation of

algorithm

Infinite loop

Unbounded recursion

Deadlock

Data race

Integer

overflow

…and MANY more

18

Classifying Software Bugs

Incorrect algorithm

Mistake in implementation of

algorithm

Infinite loop

Unbounded recursion
Deadlock
Data race

General/generic bugs

Termination bugs

Functional bugs

Concurrency bugs

…

(not a precise or complete

classification)

Out-of-bounds access

Double free

Null pointer dereference

Access after free …

Memory bugs

Invalid dynamic cast

Division or mod by zero

Assertion failure

Integer overflow

19

Functional properties vs. general properties

General properties: we know what to check!

E.g., array bounds checking:

When we see A[e] we must assert e is in range

…might be hard (e.g., in C) to know exactly what the

range is, but at least we know what range means

…but a system can be free from general defects and yet

behave nonsensically!

20

Functional properties vs. general properties

Functional properties: don’t know a priori what to check

Is this method correct?

// Precondition: A points to an allocated array

// of n integers, n > 0

int findSmallest(int *A, int n) {

int min = A[0];

for(int i = 1; i < n; i++)

if(A[i] > min) min = A[i];

return min;

}

From a software reliability tool’s perspective, yes! How

does the tool know what the programmer wanted?

21

Functional properties vs. general properties

Checking functional properties requires specifications

Specs can be hard and laborious to write, and require

maintenance

int findSmallest(int *A, int n)

requires \allocated(A, int, n),

requires n > 0,

ensures (\forall int x .

0 <= x && x < n ==> \result <= A[x])

{

int min = A[0];

for(int i = 1; i < n; i++)

if(A[i] > min) min = A[i];

return min;

}

This is a very simple spec, and it is not even complete (why?)

Think about how you would write a spec to say that a binary

tree is balanced…

22

Functional properties vs. general properties

General properties often easier to automatically check:
- Functional properties often involve quantifying over all

elements of a data structure, general properties often do not

- Quantifiers present a challenge for automated theorem

provers and constraint solvers

Functional verification: are the benefits worth the effort?
- For safety critical code: yes

- In general: at present, no (but still a fascinating topic!)

Result: most software reliability tools focus on analysis of

general properties

Philosophy: let’s help developers weed out the general

defects first, allowing them to concentrate on functionality

23

Safety properties: the focus of this course

Safety properties – “something bad does not happen” –

can be expressed using assertions + program

instrumentation

- No null dereferences: insert assertion before each

dereference

- No out-of-bounds accesses: insert assertion before each

array access + (depending on language) instrumentation to

keep track of ranges and object referents

- No divisions by zero: insert assertion before each division

- Methods init, process and destroy may only be called in

sequence: add instrumentation variables to track order of

calls, and assertions over these variables

When building analysis tools we can restrict

attention to assertion checking

24

Beyond the scope of this course

Liveness properties, e.g.: “is every packet received

eventually acknowledged”, or “does the algorithm

eventually halt for every well-formed input”

Non-functional properties, e.g. related to performance,

memory usage or energy consumption

Nevertheless, variants of many of the techniques we

cover can be applied for analysis of liveness and non-

functional properties

25

Dynamic analysis

Involves running programs (either directly or through

emulation) and collecting information about executions

Advantages:

- Precise (only observe what the program can actually do)

- Scalable (in many cases proportional to regular execution)

Disadvantages:

- Requires whole system (hard to dynamically analyse a

method in isolation, need a test driver)

- Requires execution environment or simulator

- Usefulness of result determined by quality of test inputs

26

Dynamic analysis

Widely used dynamic analysis techniques include:

We will study several dynamic analysis techniques (which

also incorporate static analysis components):

- dynamic symbolic execution

- systematic testing for concurrent programs

- lockset algorithm

- compiler fuzzing

- stack canaries

- control-flow, data-flow and write integrity

What are the most popular kinds of dynamic analyses?

Valgrind (memory error detection and more)

Compiler sanitizers, e.g, ThreadSanitizer

(detecting concurrency errors)

27

Static analysis

Advantages:

- Can detect defects not revealed by existing test cases

- High coverage: can potentially prove properties about

all, or a large number, of possible executions

- Can be applied to incomplete systems – applicable at

early stages of development

- Potentially highly scalable if applied in a modular

fashion

Key disadvantage: static analysis ranges between

- Precise, but extremely expensive

- Fast, but extremely imprecise (lots of false positives)

Reasoning about program executions without actually

running the program

28

Static analysis

Widely used static analysis techniques:

- Compilers (think of the warnings they generate)

- Open-source tools, e.g., lint (C), FindBugs (Java)

- Commercial tools from e.g., Coverity and GrammaTech

- Internal company tools, e.g., Facebook’s Infer tool

We will study:

- verification condition generation

- procedure summaries

- bounded model checking

- invariant generation

What are the most popular static analyses?

29

False positives

Term may seem counter-intuitive, because positive

sounds good!

Easy way to remember: a bug is like a disease

- You test positive for a disease if you have the

disease, which is bad

- A false positive: you are told you have a disease, but

really you do not

An analysis is said to report a false positive if it warns

about a problem that cannot actually occur

An analysis is said to be

imprecise if it reports

lots of false positives

An analysis that may report

false positives is sometimes

called incomplete

30

False positive: example

int findSmallest(List<Integer> s) {

if(s.isEmpty()) throw new RuntimeException();

int result;

for (int i = 0; i < s.size(); i++) {

if(i == 0) {

result = s.get(i);

} else if(s.get(i) > result) {

result = s.get(i);

}

}

return result;

}

error: variable result might not have been initialized

…but is this a useful error message?

31

False negatives

Easy way to remember: a bug is like a disease

- You test negative for a disease if you do not have

the disease, which is good

- A false negative: you are told you do not have a

disease, but really you do!

An analysis is said to report a false negative if it reports

absence of problems, when actually problems can occur

An analyser is called unsound if it

may report false negatives

32

False negative: example

int inc(int x)

ensures \result > x

{

return x + 1;

}

Does the post-condition hold for all inputs?

Post-condition

What about Integer.MAX_VALUE?

Some analysers do not warn about this problem, treating

integers mathematically. Strictly this is unsound

… but … warning about overflow here could be

regarded as a false positive, if the method is required to

be called with appropriately small arguments

False positives/negatives are not

absolute – may depend on context

33

False positives vs. false negatives

False positives hinder the use of analysis tools in day-

to-day software development:

- If tool gives 90% false alarms, programmers tend to

ignore all warnings

False negatives are bad when analysing safety

critical software – missing a bug can be disastrous

Commercial static analysers: false positives regarded

as the main problem

- Unsoundness (false negatives) carefully introduced to

limit false positive rate

- See Coverity paper: “A Few Billion Lines of Code Later:

Using Static Analysis to Find Bugs in the Real World” – Beesey

et al., Communications of the ACM, Vol. 53 No. 2, Pages 66-75

34

Aid in remembering false positives,

negatives, soundness and completeness

Reported by tool

In
 r

e
a
lit

y

Correct Incorrect

Correct

Incorrect

true

negative

true

positive

false

positive

false

negative

Compare tool’s view of a program’s correctness with reality

Sound tool:

never reports

a false

negative

Complete tool: never

reports a false positive

Important: in

general, the tool

has no idea

whether its result

is a true/false

positive/negative

