
ARCHER: Effectively Spotting Data
Races in Large OpenMP Applications ∗

Simone Atzeni, Ganesh Gopalakrishnan,
Zvonimir Rakamarić

University of Utah

Dong H. Ahn, Ignacio Laguna,
Martin Schulz, Gregory L. Lee

Lawrence Livermore National Laboratory

Joachim Protze,
Matthias S. Müller

RWTH Aachen University

Abstract
Despite decades of research on data race detection, the high per-
formance computing community does not have effective tools to
check the absence of races in serial codes being ported over to
notations such as OpenMP. The problem lies more with the CS
community being unaware of this need, and the HPC commu-
nity having not faced this need owing to its predominant past re-
liance on message passing for harnessing parallelism. In this pa-
per, we describe the results of a CS/HPC collaboration through
which we have adapted an existing thread-level race checker—
namely ThreadSanitizer—to become an effective OpenMP data
race checker. Our success is attributable to our having chosen a
judicious combination of black-listing of code blocks as well as
static analysis to reduce the number of accesses being tracked. In
this paper, we report our success in creating a new race checker
called ARCHER based on this approach. Our experiments confirm
not only the practicality of ARCHER in general terms, but also its
ability to shed light on some past incidents of non-determinism
observed in critical scientific simulation routines. Specifically,
with the help of ARCHER, our team has been able to isolate data
races that had vexed engineers. The deeper message in this pa-
per is that of the importance of active collaborations between
academic researchers and national lab partners—in many cases
more important than technical advances that nevertheless do
not transfer to usable tools. We describe ARCHER, its design, its
successes, and comment on the future path of our research.

1. Introduction
High performance computing (HPC) is undergoing an explo-
sion in adoption of on-node parallelism. Today’s largest sys-
tems [8] are significantly underpinned by a plethora of paral-
lelism options on the compute node, including, but not lim-
ited to, more cores, wider simultaneous multithreading (SMT),
single-instruction/multiple-data (SIMD) units, and accelerators
like GPUs. Recent announcements on the next-generation com-
puting systems [6, 7] indicate that the degree of on-node paral-
lelism will be even greater in the future. This trend, in combina-
tion with less memory per processing element, is bringing many
large production applications, which hitherto have relied solely
on MPI, to crossroads where they must transition into hybrid
parallelism [1] to realize the full potential of the largest systems.

Due in large part to portability and ease of use, OpenMP
offers a highly attractive path to this transition. In fact, the
MPI+OpenMP model is becoming increasingly popular even at
the largest computing centers. For example, at Lawrence Liver-
more National Laboratory (LLNL), most of our mission-critical
multiphysics applications [4] are currently undergoing this tran-

∗ This work performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344 (LLNL-CONF-670108).

sition, involving teams of programmers to combine large pro-
duction MPI codes with OpenMP parallelism. However, port-
ing large applications (e.g., over million lines of code [19]) to
OpenMP is non-trivial and error-prone, and data races intro-
duced into large code base are extremely challenging to debug.

Broadly speaking, a race checker that can effectively spot a
data race in a large code base demands several key attributes.
Most of all, the tool should incur low runtime overheads, both
in terms of performance and memory, and do this without sacri-
ficing analysis accuracy (i.e., number of true races returned) and
precision (i.e., number of found races that can actually occur in
practice). In addition, the tool should be portable as the lifetime
of these large applications spans many generations of computing
platforms. Unfortunately, most exiting tools fall short of satisfy-
ing all these attributes, rendering them largely ineffective.

Most dynamic analysis-based tools, like Helgrind [17] and
IntelrInspector XE (hereafter referred to as Inspector), can in-
cur over 30- to 100-fold execution slowdown and over 10x mem-
ory overhead on large applications. ThreadSanitizer (TSan) [26]
began to break this runtime-overhead wall with clever compiler-
based instrumentation and shadow-memory access schemes.
Similarly to other open-source tools like Helgrind, it only works
on low-level threading models (e.g., POSIX Threads) and suffers
significant precision losses (i.e., many false alarms) on high-level
ones like OpenMP. On the other hand, the attributes of most
static analysis tools including Intel Security Static Analysis (SSA)
are opposite: while they do not incur runtime overhead, they
greatly suffer low analysis precision and accuracy.

In this paper, we present ARCHER, a novel OpenMP data-
race checker that fills this gap to aid HPC programmers in this
MPI+OpenMP transition. It combines static and dynamic anal-
ysis techniques within open-source infrastructure frameworks
(LLVM and ThreadSanitizer) to satisfy the key attributes de-
manded by this transition. ARCHER’s LLVM-based static tech-
niques, such as data-dependency and serial-code-detection
analyses, first identify those code regions where it can make
static race freedom guarantees. Then, it instruments only the re-
maining, potentially unsafe regions to keep the runtime over-
heads of its dynamic analysis component at bay.

More specifically, we make the following contributions:

• The first portable OpenMP data race detector that combines
static and dynamic techniques, meaningfully lowering run-
time overheads without accuracy and precision losses;

• A collection of techniques that enrich and seamlessly bridge
static and dynamic techniques in analyzing a large code base;

• An annotation technique that directly integrates happens-
before knowledge into an OpenMP runtime library allowing
runtime detectors to avoid false alarms;

1 2015/5/18

• Evaluations including a real-world case study to demonstrate
the efficacy and performance of ARCHER.

Our performance evaluation shows that ARCHER significantly
outperforms ThreadSanitizer and Inspector, while providing the
same or better precision. Our case study shows that ARCHER

is capable of discovering previously unknown, elusive OpenMP
data races in AMG2013, one of the CORAL benchmark codes [2]
as well as the latest release of Hypre [14].We discovered that these
races could be linked to some of the intermittent simulation fail-
ures that the programmers gave up on debugging in the past.

2. Motivating Example
HYDRA [19] is a large multiphysics application developed at
LLNL, which is used for simulations at the National Ignition
Facility (NIF) and other high energy density physics facilities.
It comprises many physics packages (e.g., radiation transfer,
atomic physics, and hydrodynamics), and although all of them
use MPI, a subset of them use thread-level parallelism (OpenMP
and POSIX Threads) in addition to MPI. It has over one million
lines of code and a development lifetime that exceeds 20 years.

In 2013, developers began to develop code to port HYDRA
to Sequoia [21], the over 1.5 million-core IBM Blue Gene/Q-
based system that had just been brought online at that time.
Although the efforts included incorporating more threading for
performance, they got significantly impeded when they could
not resolve a non-deterministic crash on an OpenMP version of
Hypre [14] (used by one of HYDRA’s scientific packages). The de-
velopers had a very hard time to debug this error because it oc-
curred only intermittently, only at large scales (at or above 8192
MPI processes), and only under compiler optimization. After the
team had spent substantial amounts of time, they suspected the
presence of a data race within Hypre, but the difficulties in de-
bugging and time pressure forced them to work around the issue
by selectively disabling OpenMP in Hypre.

This case clearly shows that we can benefit from effective data
race detectors specifically tailored to high-end computing envi-
ronments and our findings in Section 4.3 suggest that these tools
could have aided the team in quickly testing their suspicion. Un-
fortunately, a significant gap exists in tools that can aid program-
mers to debug OpenMP data races in high-end computing en-
vironments. Existing static analysis techniques for race detec-
tion [11, 22] can find possible bugs, but they are imprecise by
nature and produce many false alarms. On the other hand, dy-
namic analysis techniques [12, 24, 25], produce less (or no) false
alarms , but they can miss races and incur high overheads.

Despite all these existing techniques and tools, we have found
that none of them is well suited for debugging large OpenMP pro-
grams out of box. As an example, consider ThreadSanitizer [25],
a state-of-the-art dynamic data-race checker. When we apply
ThreadSanitizer to debug classical race cases in a medium-size
OpenMP code, it crashes due to resource exhaustion and pro-
duces large numbers of false alarms because it does not recog-
nize the OpenMP synchronization semantics. ARCHER uses an
improved version of ThreadSanitizer that leverages an annotated
version of the Intel OpenMP runtime library to recognize library-
level synchronization primitives and to avoid false alarms.

3. Approach
Our approach combines several key techniques to embody the
design principles described above. First, we seamlessly combine
static and dynamic analysis techniques to lower the runtime
overheads without sacrificing high analysis accuracy and preci-
sion. Second, we build on portable open-source compiler and
dynamic analysis infrastructures to gain portability. Third, we

OpenMP
Source
Code

Static Analysis
(OpenMP C/C++ Clang/LLVM Compiler)

LLVM IR
Code

Static
Analysis
Passes

Fine-
grained
blacklist

generation

TSan
Instrument.

Dynamic Analysis

Executable

Instrumented
OpenMP
Runtime

TSan
Data Race

Report

Figure 1: ARCHER tool flow

1 main()({
2 //(Serial(code
3 setup();
4 sort();
5
6 #pragma(omp(parallel(for
7 for(int(i(=(0;(i(<(N;(++i)({
8 a[i](=(a[i](+(1;
9 }

10
11 #pragma(omp(parallel(for
12 for(int(i(=(0;(i(<(N;(++i)({
13 a[i](=(a[i(+(1];
14 }
15
16 #pragma(omp(parallel
17 {
18 sort();
19 }
20
21 //(Serial(code
22 printResults();
23 }

Serial code blacklisted

No data-dependent
code blacklisted

Potentially racy
code instrumented

Used in serial and parallel code

Serial code blacklisted

Figure 2: Targeted instrumentation on a sample OpenMP program

enhance the OpenMP runtime library to expose happens-before
knowledge explicitly and use that to make our dynamic analysis
aware of OpenMP’s synchronization semantics.

Figure 1 illustrates our high-level approach embodied in our
tool, ARCHER [23], which is split into two phases: static and dy-
namic. The first phase applies several static analyses [15, 18] on
the input program to identify sequential code regions and clas-
sify OpenMP code regions into two categories: race-free regions
and potentially racy regions. The second phase leverages the re-
sults of the static analysis phase in a dynamic data-race detec-
tion algorithm [12, 25] in order to check only the potentially racy
OpenMP regions. Leveraging static analysis to dynamically check
only the potentially racy regions reduces the runtime and mem-
ory overhead of ARCHER, while not degrading its analysis quality.

We implemented ARCHER using the OpenMP [3] branch of
LLVM/Clang [20] and ThreadSanitizer dynamic race checker,
both open-source tools infrastructures. ARCHER extends some of
the static verification passes already present in LLVM and adds
some custom passes for further static analyses.

2 2015/5/18

3.1 Static Analysis Phase

ARCHER performs several static analyses on the source files of an
OpenMP program to learn conservative information helpful for
the subsequent dynamic data-race detection. As shown in Fig-
ure 1, an OpenMP program is the expected input to the ARCHER

tool flow. The input program is first transformed into LLVM in-
termediate representation (IR) using the Clang C/C++ front-end.
Several LLVM passes analyze IR code to identify code regions that
are race-free, are executed sequentially, and to classify OpenMP
code regions into the two categories introduced above.

In our work, we leverage an automatic data dependency anal-
ysis to identify the OpenMP regions that do not contain data de-
pendencies. Such regions are data race-free, and hence do not
have to be further analyzed by ThreadSanitizer, which can in turn
focus on the potentially racy regions. ARCHER performs conser-
vative dependency analysis using an existing tool in the LLVM/-
Clang suite called Polly [15]. Polly looks for data dependencies
inside the OpenMP constructs. Since a dependency can turn into
a data race or not depending on the loop input, in order to avoid
missing data races, ARCHER applies a conservative strategy clas-
sifying a region with a data dependency as potentially racy, so it is
analyzed at runtime. Figure 2 shows an example of a data depen-
dency in lines 11–14. In this case, multiple threads may simul-
taneously access the same array location and cause a data race.
Figure 2 shows an example of an OpenMP for-loop with no data
dependencies in lines 6–9, where multiple threads always access
distinct array locations, this region can be considered race-free.

The information about race-free and potentially racy regions,
classified by the dependency analysis, are stored in a list in terms
of line numbers in the source code. The lists containing the line
numbers of race-free regions are deemed blacklists since all the
loads/stores listed can be ignored during the dynamic analysis
performed by ThreadSanitizer. When the static analysis passes
are done, the ThreadSanitizer instrumentation pass instruments
the IR code in order to insert the functions needed for catching
data races at runtime. Our customized ThreadSanitizer instru-
mentation pass takes the blacklists as its input to avoid instru-
menting the race-free regions as identified by Polly.

ARCHER also applies to the code custom passes to black-
list the sequential code of an OpenMP program to further re-
duce the amount of load/stores to be checked at runtime. This
is quite powerful on a production simulation that can contain a
large portion of un-threaded execution (e.g., packages that only
use MPI and serial-code segments). ARCHER identifies a sequen-
tial load/store as an instruction that is not reachable from an
OpenMP construct, neither directly nor by following (nested)
function invocations. If a function is invoked both from within
and outside an OpenMP region, its instructions are conserva-
tively considered as being executed in parallel. Function sort()
in Figure 2 is an instance of this case: it is invoked from sequen-
tial code on line 4 and from parallel code on line 18. We imple-
mented a custom pass in ARCHER to identify every load/store
executed sequentially in a program, and to generate the appro-
priate blacklist (in terms of source line numbers). The generated
blacklist is used as input to the ThreadSanitizer instrumentation
pass, which does not instrument those lines of code.

3.2 Dynamic Analysis Phase

ARCHER uses the ThreadSanitizer runtime analysis for the dy-
namic data race detection of OpenMP programs. The vanilla ver-
sion of ThreadSanitizer [26] is a data-race detector for C/C++ and
Go programs, and it was not explicitly designed to find data races
in OpenMP programs. Nevertheless, since OpenMP parallelism
is often enabled by a POSIX Thread-based runtime library, the
same technique implemented by ThreadSanitizer can typically

check OpenMP code as well. Indeed, running vanilla ThreadSan-
itizer on a simple racy OpenMP program can pinpoint the race,
but it also reports many false alarms due to not capturing the
OpenMP semantics.

The OpenMP standard specifies several high-level synchro-
nization points. ThreadSanitizer lacks the knowledge about these
synchronization points, causing it to generate many false alarms.
We use the Annotation API of ThreadSanitizer to highlight these
synchronization points within the OpenMP runtime to avoid
such false alarms. As part of our previous work [23], we showed
this technique eliminates all false alarms in our benchmarks.

Our next step is to combine the ThreadSanitizer dynamic
technique with our static analyses in order to reduce the runtime
and memory overhead generated during the verification process.
The ThreadSanitizer instrumentation involves inserting special
function calls for every load and store instruction that gather
memory-access information during runtime. ThreadSanitizer
provides a feature that allows users to blacklist functions (by their
name) that should not be instrumented and that are thus ig-
nored at runtime [27]. We extended this feature to a more fine-
grained selection at the level of source lines [23], allowing us to
ignore race-free code regions more precisely as determined by
static analyses. The output of the ThreadSanitizer instrumenta-
tion step is a selectively instrumented binary that interacts with
the ThreadSanitizer runtime analyzer when finally executed.

4. Evaluation
We perform our evaluation on the Cab cluster at LLNL. Each
Cab node has two 8-core, 2.6 GHz Intel Xeon E5-2670 proces-
sors and 32GB of RAM. We evaluate the effectiveness, perfor-
mance, and scalability of our tool using the OmpSCR benchmark
suite [10] as well as AMG2013, a program from the CORAL bench-
mark suite [2]. We check each benchmark with Inspector, the
vanilla version of ThreadSanitizer, and ARCHER with and with-
out static analysis support. The benchmarks are compiled with
LLVM for ThreadSanitizer and ARCHER, and with the Intel Com-
piler for Inspector. For both compilers we set the debug flag (-g)
to report information about the position of potential races in the
code. For ARCHER we set the optimization flag to -O0 because
its static analysis passes could be misled by higher optimization
levels. Once the blacklists are created and for all the other cases,
we left the default value of the optimization flag for the particu-
lar benchmark (for most benchmark -O2. Finally, all benchmarks
are linked against the IntelrOpenMP* Runtime [5]. The unmod-
ified version of the Intel OpenMP Runtime is used for the regular,
Intel Compiler, and vanilla ThreadSanitizer executions, while our
instrumented version [23] is used for ARCHER runs. Each bench-
mark application is executed using 2, 4, 8, 12 and 16 threads.

We configure the tools using various parameters that influ-
ence their effectiveness and performance. We run ARCHER in
two modes: without static analysis support (no blacklisting of
OpenMP-race-free regions) and with our static analyses. Vanilla
ThreadSanitizer is executed using default values for its param-
eters. For our evaluation, we choose a base configuration for In-
spector that outputs a complete report including locations of po-
tential data races (-collect ti3), in order to be comparable
with ARCHER and ThreadSanitizer, which produce such informa-
tion by default. Starting from this configuration, we run Inspec-
tor in three different modes: default, we do not change any other
parameters; scope (-knob scope=extreme), sets the memory-
access granularity to 1 byte (same as ThreadSanitizer); use-
maximum-resources (-knob use-maximum-resources=true),
detect more data races but does not optimize memory consump-
tion and performance.

3 2015/5/18

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05

F-score

20

40

60

80

100

120

M
e
d
ia

n
 S

lo
w

d
o
w

n

F-score vs. performance overhead slowdown

Archer

Archer(no SA)

InspectorDefault

InspectorExtremeScope

InspectorMaxResources

Figure 3: Overall merit on analysis quality vs. performance

4.1 OmpSCR Benchmark Suite

Our experimental results compare the analysis quality and per-
formance of ARCHER with the other tools using the OmpSCR
benchmark suite [10]. We chose this suite because it has a known
number of races from previous work [16]. For space reasons we
omit the runtime overheads for each tool configuration, but we
summarize the overall merit of these tools by plotting their anal-
ysis quality vs. performance.

Our evaluation shows that ARCHER in both configurations
(with and without static analysis support) is capable of detecting
all of the documented races in most of the applications. By con-
trast, in all three configurations Inspector incurs varying degrees
of accuracy and precision loss. In terms of accuracy (the number
of correctly detected races divided by the number of true races
that should have been detected), Inspector in default configura-
tion misses races in three applications. Its scope-extreme con-
figuration also misses all these races and oddly also misses one
additional race. However, Inspector in max-resources configura-
tion detects all of the races. In terms of precision (the number of
correctly detected races divided by the number of all the races
detected, including false alarms), ARCHER in both configurations
incurs no false alarms, while Inspector shows some losses.

We show the merits of these tools by plotting their analysis
quality vs. performance. In Figure 3 we use F-score to capture the
overall quality of analysis. It is a measure of analysis quality that
accounts for both accuracy and precision and is given by:

F1 = 2 · precision ·accuracy

precision+accuracy
.

Thus, F-score reaches its best value at 1 and worst at 0. In Fig-
ure 3, we plot each tool onto the two-dimensional space defined
by F-score and slowdown medians. We use the median as our
performance metric because the means are significantly skewed
by large data points. This plot shows the general attributes of
each tool in terms of accuracy and runtime overheads. Closer
is the point to the lower right corner of the plot better are the
performance and accuracy/precision of the tool. The plot clearly
shows that ARCHER meets our design goal, compared to other
state-of-the-art tools: in both configurations it does much better
than Inspector in all its configurations.

4.2 AMG2013

To complement our OmpSCR study with a larger code base, we
perform our evaluation on AMG2013 (with about 75,000 lines

of code), an important program from our CORAL benchmark
suite. AMG2013 [13] is a parallel algebraic multigrid solver for
linear systems, based on Hypre [14], a large linear solver library
developed at LLNL. We ran the three tools on AMG2013, and
ARCHER discovered three races unknown to us and never re-
ported before. Vanilla ThreadSanitizer, after reporting about 150
false alarms, crashes and never finishes the verification process.
Inspector reports all three data races only when it is configured
to use-maximum resources. When using the scope-extreme con-
figuration, it reports all the three races only when running with
16 threads. Finally, at default configuration, Inspector always
misses one specific race of the three.

Some of the tools, as dynamic checkers, significantly slow
down the program as shown in Figure 4a. However, it is very clear
that ARCHER has significant performance advantages relative to
other tools. In fact, Figure 4b shows the relative performance of
ARCHER (with and without static analysis support) against all of
the three configurations of Inspector. Inspector in the default
mode outperforms ARCHER at certain thread counts and in ex-
treme scope it performs better at 12 threads. As we noted before,
however, the performance gain comes at the expense of precision
loss. Figure 4b shows that ARCHER is generally 2x-15x faster than
Inspector depending on the number of threads. ARCHER com-
pared with itself without any static analysis support improves the
performance by about a factor of 1.5.

ARCHER also reduces the memory overhead relative to Inspec-
tor in comparable configurations, but it is still shown to incur
relatively large memory footprints. Our further analysis suggests
that this is because ThreadSanitizer’s runtime, which ARCHER

leverages, allocates shadow memory when the target program
accesses that memory first time. For example, an array initial-
ization would access the entire memory allocated to that array
and ThreadSanitizer allocates the shadow memory for this array
during the initialization. As part of our future work, we plan to
advance ways to reduce the memory overheads further, which
includes a static mechanism to identify array initializations and
to exclude those regions using our blacklisting so as to avoid this
bulk shadow-memory allocation problem at runtime.

4.3 ARCHER Helps Combat Real-World Races for HYDRA

We present our investigation on applying ARCHER to the inter-
mittent crash issue on HYDRA described in Section 2. We started
to make a connection between our findings on AMG and this
unresolved real-world issue when we shared these findings with
one of the Hypre developers. Of three data races flagged by
ARCHER, two cases were found in a fairly complex OpenMP re-
gion spanning over 400 source lines with tens of reaching vari-
ables. The developer confirmed that both are indeed true data
races as a thread will access the first element of a portion of
the arrays which belongs to the next thread, and the next thread
will subtract a number from this element. However, because the
number being subtracted for this particular element is zero, this
condition has never been detected through the runtime testing
coverage. While programmers often consider this type of races—
multiple threads writing the same value to the same memory
location—benign, the developer noted that the containing func-
tion was one of the routines where they had to disable OpenMP.

Encouraged by our findings, the application team resumed
their debugging of this issue. They created a patch to fix these
benign data races, applied it to the latest Hypre release (2.10.0b),
and ran the same simulation with this patched Hypre. This time
the simulation failed in a different way: a crash occurred very
quickly and much more deterministically. So, we applied ARCHER

to the latest Hypre using a representative test program that
the developer provided, and ARCHER reported 20 races across

4 2015/5/18

2 4 8 12 16

of threads

0

50

100

150

200

250

300

S
lo

w
d
o
w

n

Runtime Slowdown

InspectorDefault

InspectorExtremeScope

InspectorMaxResources

Archer(no SA)

Archer

(a) AMG2013 execution slowdown

2 4 8 12 16

of threads

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

S
p
e
e
d
u
p

Runtime Speedup

InspectorDefault

InspectorExtremeScope

InspectorMaxResources

Archer(no SA)

(b) Relative performance of ARCHER (SA)

Figure 4: AMG2013 execution slowdown caused by the tools and
the relative performance of ARCHER (SA)

three routines. The developers will have to analyze our findings
more closely, but our initial observation indicates that most of
these races again appear to be what most programmers con-
sider benign. If the detected races were indeed the root cause
of these crashes, we suspect that the compiler (IBM XL) on this
platform, which would assume race-free code for optimization,
transformed the code in a way to turn those benign races into
malignant ones [9]. Whether they are the root cause or not, it is
clear that removing these races leaves such a deep debugging ef-
fort with one less unknown, and makes the code more compiler-
optimization-safe [9] in the future.

5. Conclusions and Future Work
In this paper, we have presented ARCHER, an OpenMP data-
race checker that embodies the design principles needed to cope
with and exploit the characteristics of large HPC applications
and their perennial development lifecyle. ARCHER brings the best
from static and dynamic techniques and seamlessly combines
them to deliver on these principles. Our evaluational results
strongly suggest that ARCHER meets the design objectives by in-
curring low runtime overheads while offering very high accuracy

and precision. Further, our interaction with scientists shows that
it has already proven to be effective on highly elusive, real-world
errors, which can significantly waste the scientists’ productivity.

However, as part of bringing ARCHER to full production, we
must further innovate. In particular, we need to reduce its run-
time and memory overheads further so as to benefit a wide range
of production uses. For this purpose, we will keep taping into a
great potential in the static analysis space. For example, ARCHER

currently classifies each OpenMP region with the binary classifi-
cation system: race free or potentially racy. More advanced tech-
nique will allow us to move away from the binary logic. In fact,
we plan to crack open each of these potentially racy regions and
apply fine-grained static techniques in order to identify and ex-
clude race-free sub-regions within it. Exploiting symmetries in
OpenMP’s structured parallelism is another venue we plan to
pursue. The adequately defined symmetries will allow ARCHER

to target a smaller set of representative threads and memory
space for further overhead reduction. Perhaps more importantly
and urgently, our team will soon contribute ARCHER back to the
open-source community. It is our hope that this tool will help
HPC softland this rather disorderly transition to hybrid paral-
lelism.

References
[1] Compilers and more: Mpi+x. http://www.hpcwire.com/2014/

07/16/compilers-mpix/.

[2] Coral benchmark codes. https://asc.llnl.gov/
CORAL-benchmarks/.

[3] Openmp/clang. http://clang-omp.github.io.

[4] Compute codes. https://wci.llnl.gov/simulation/
computer-codes.

[5] Intel openmp runtime library. https://www.openmprtl.org.

[6] Coral/sierra. https://asc.llnl.gov/coral-info.

[7] Summit: Scale new heights. discover new solutions. https:
//www.olcf.ornl.gov/wp-content/uploads/2014/11/
Summit_FactSheet.pdf.

[8] Top 500. http://www.top500.org/.

[9] H.-J. Boehm. How to miscompile programs with “benign” data
races. In HotPar’11: Proceedings of the 3rd USENIX conference on
Hot topic in parallelism, 2011.

[10] A. J. Dorta, C. Rodríguez, F. de Sande, and A. González-Escribano.
The openmp source code repository. In PDP, pages 244–250, 2005.

[11] D. Engler and K. Ashcraft. Racerx: effective, static detection of race
conditions and deadlocks. In SOSP, pages 237–252, 2003.

[12] C. Flanagan and S. N. Freund. Fasttrack: Efficient and precise dy-
namic race detection. In PLDI, pages 121–133, 2009.

[13] C. for Applied Scientific Computing (CASC) at LLNL. Amg2013.
https://codesign.llnl.gov/amg2013.php, .

[14] C. for Applied Scientific Computing (CASC) at LLNL. Hypre. http:
//acts.nersc.gov/hypre/, .

[15] T. Grosser, A. Groesslinger, and C. Lengauer. Polly – Performing
Polyhedral Optimizations on Low-Level Intermediate Representa-
tion. Parallel Processing Letters, 2012.

[16] O.-K. Ha, I.-B. Kuh, G. M. Tchamgoue, and Y.-K. Jun. On-the-fly de-
tection of data races in openmp programs. In Proceedings of the 2012
Workshop on Parallel and Distributed Systems: Testing, Analysis, and
Debugging, pages 1–10, 2012.

[17] A. Jannesari, K. Bao, V. Pankratius, and W. F. Tichy. Helgrind+: An
efficient dynamic race detector. In IPDPS, 2009.

[18] K. Kennedy and J. R. Allen. Optimizing Compilers for Modern Archi-
tectures: A Dependence-based Approach. 2002.

[19] S. H. Langer, I. Karlin, and M. Marinack. Performance characteris-
tics of hydra - a multi-physics simulation code from llnl. Technical
report, 2014.

5 2015/5/18

http://www.hpcwire.com/2014/07/16/compilers-mpix/
http://www.hpcwire.com/2014/07/16/compilers-mpix/
https://asc.llnl.gov/CORAL-benchmarks/
https://asc.llnl.gov/CORAL-benchmarks/
http://clang-omp.github.io
https://wci.llnl.gov/simulation/computer-codes
https://wci.llnl.gov/simulation/computer-codes
https://www.openmprtl.org
https://asc.llnl.gov/coral-info
https://www.olcf.ornl.gov/wp-content/uploads/2014/11/Summit_FactSheet.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2014/11/Summit_FactSheet.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2014/11/Summit_FactSheet.pdf
http://www.top500.org/
https://codesign.llnl.gov/amg2013.php
http://acts.nersc.gov/hypre/
http://acts.nersc.gov/hypre/

[20] C. Lattner. Llvm and clang: advancing compiler technology. Proc. of
FOSDEM, 2011.

[21] Lawrence Livermore National Laboratory. Advanced Simulation
and Computing Sequoia. https://asc.llnl.gov/computing_
resources/sequoia.

[22] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: Context-sensitive
correlation analysis for race detection. In PLDI, pages 320–331, 2006.

[23] J. Protze, S. Atzeni, D. H. Ahn, M. Schulz, G. Gopalakrishnan, M. S.
Müller, I. Laguna, Z. Rakamarić, and G. L. Lee. Towards providing
low-overhead data race detection for large openmp applications. In
Proceedings of the 2014 LLVM Compiler Infrastructure in HPC, pages
40–47, 2014.

[24] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACM TOCS, pages 391–411, 1997.

[25] K. Serebryany and T. Iskhodzhanov. Threadsanitizer: Data race de-
tection in practice. In Proceedings of the Workshop on Binary Instru-
mentation and Applications, pages 62–71, 2009.

[26] K. Serebryany and D. Vyukov. ThreadSanitizer, a data race
detector for C/C++ and Go. https://code.google.com/p/
thread-sanitizer/, .

[27] K. Serebryany and D. Vyukov. Sanitizer special case list. http:
//clang.llvm.org/docs/SanitizerSpecialCaseList.html, .

6 2015/5/18

https://asc.llnl.gov/computing_resources/sequoia
https://asc.llnl.gov/computing_resources/sequoia
https://code.google.com/p/thread-sanitizer/
https://code.google.com/p/thread-sanitizer/
http://clang.llvm.org/docs/SanitizerSpecialCaseList.html
http://clang.llvm.org/docs/SanitizerSpecialCaseList.html

	Introduction
	Motivating Example
	Approach
	Static Analysis Phase
	Dynamic Analysis Phase

	Evaluation
	OmpSCR Benchmark Suite
	AMG2013
	Archer Helps Combat Real-World Races for HYDRA

	Conclusions and Future Work

